6 resultados para p -and q-analytic
em Université de Montréal, Canada
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev.
Resumo:
Une nouvelle notion d'enlacement pour les paires d'ensembles $A\subset B$, $P\subset Q$ dans un espace de Hilbert de type $X=Y\oplus Y^{\perp}$ avec $Y$ séparable, appellée $\tau$-enlacement, est définie. Le modèle pour cette définition est la généralisation de l'enlacement homotopique et de l'enlacement au sens de Benci-Rabinowitz faite par Frigon. En utilisant la théorie du degré développée dans un article de Kryszewski et Szulkin, plusieurs exemples de paires $\tau$-enlacées sont donnés. Un lemme de déformation est établi et utilisé conjointement à la notion de $\tau$-enlacement pour prouver un théorème d'existence de point critique pour une certaine classe de fonctionnelles sur $X$. De plus, une caractérisation de type minimax de la valeur critique correspondante est donnée. Comme corollaire de ce théorème, des conditions sont énoncées sous lesquelles l'existence de deux points critiques distincts est garantie. Deux autres théorèmes de point critiques sont démontrés dont l'un généralise le théorème principal de l'article de Kryszewski et Szulkin mentionné ci-haut.
Resumo:
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles.
Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte.
Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number
race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <
Resumo:
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent.
Resumo:
We developed a nanoparticles (NPs) library from poly(ethylene glycol)–poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a “micelle-like” or “polymer nano-aggregate” structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to “polymer nano-aggregate” particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers.