5 resultados para overlap probability
em Université de Montréal, Canada
Flippable Pairs and Subset Comparisons in Comparative Probability Orderings and Related Simple Games
Resumo:
We show that every additively representable comparative probability order on n atoms is determined by at least n - 1 binary subset comparisons. We show that there are many orders of this kind, not just the lexicographic order. These results provide answers to two questions of Fishburn et al (2002). We also study the flip relation on the class of all comparative probability orders introduced by Maclagan. We generalise an important theorem of Fishburn, Peke?c and Reeds, by showing that in any minimal set of comparisons that determine a comparative probability order, all comparisons are flippable. By calculating the characteristics of the flip relation for n = 6 we discover that the regions in the corresponding hyperplane arrangement can have no more than 13 faces and that there are 20 regions with 13 faces. All the neighbours of the 20 comparative probability orders which correspond to those regions are representable. Finally we define a class of simple games with complete desirability relation for which its strong desirability relation is acyclic, and show that the flip relation carries all the information about these games. We show that for n = 6 these games are weighted majority games.
Resumo:
Cette présentation examinera le degré de certitude qui peut être atteint dans le domaine scientifique. Le paradigme scientifique est composé de deux extrêmes; causalité et déterminisme d'un côté et probabilité et indéterminisme de l'autre. En faisant appel aux notions de Hume de la ressemblance et la contiguïté, on peut rejeter la causalité ou le hasard objectif comme étant sans fondement et non empirique. Le problème de l'induction et le sophisme du parieur proviennent d’une même source cognitif / heuristique. Hume décrit ces tendances mentales dans ses essais « Of Probability » et « Of the Idea of Necessary Connexion ». Une discussion sur la conception de la probabilité de Hume ainsi que d'autres interprétations de probabilité sera nécessaire. Même si la science glorifie et idéalise la causalité, la probabilité peut être comprise comme étant tout aussi cohérente. Une attitude probabiliste, même si elle est également non empirique, pourrait être plus avantageuse que le vieux paradigme de la causalité.
Resumo:
Dans cette thèse l’ancienne question philosophique “tout événement a-t-il une cause ?” sera examinée à la lumière de la mécanique quantique et de la théorie des probabilités. Aussi bien en physique qu’en philosophie des sciences la position orthodoxe maintient que le monde physique est indéterministe. Au niveau fondamental de la réalité physique – au niveau quantique – les événements se passeraient sans causes, mais par chance, par hasard ‘irréductible’. Le théorème physique le plus précis qui mène à cette conclusion est le théorème de Bell. Ici les prémisses de ce théorème seront réexaminées. Il sera rappelé que d’autres solutions au théorème que l’indéterminisme sont envisageables, dont certaines sont connues mais négligées, comme le ‘superdéterminisme’. Mais il sera argué que d’autres solutions compatibles avec le déterminisme existent, notamment en étudiant des systèmes physiques modèles. Une des conclusions générales de cette thèse est que l’interprétation du théorème de Bell et de la mécanique quantique dépend crucialement des prémisses philosophiques desquelles on part. Par exemple, au sein de la vision d’un Spinoza, le monde quantique peut bien être compris comme étant déterministe. Mais il est argué qu’aussi un déterminisme nettement moins radical que celui de Spinoza n’est pas éliminé par les expériences physiques. Si cela est vrai, le débat ‘déterminisme – indéterminisme’ n’est pas décidé au laboratoire : il reste philosophique et ouvert – contrairement à ce que l’on pense souvent. Dans la deuxième partie de cette thèse un modèle pour l’interprétation de la probabilité sera proposé. Une étude conceptuelle de la notion de probabilité indique que l’hypothèse du déterminisme aide à mieux comprendre ce que c’est qu’un ‘système probabiliste’. Il semble que le déterminisme peut répondre à certaines questions pour lesquelles l’indéterminisme n’a pas de réponses. Pour cette raison nous conclurons que la conjecture de Laplace – à savoir que la théorie des probabilités présuppose une réalité déterministe sous-jacente – garde toute sa légitimité. Dans cette thèse aussi bien les méthodes de la philosophie que de la physique seront utilisées. Il apparaît que les deux domaines sont ici solidement reliés, et qu’ils offrent un vaste potentiel de fertilisation croisée – donc bidirectionnelle.
Resumo:
Thesis written in co-mentorship with Robert Michaud.