9 resultados para nuclear membrane
em Université de Montréal, Canada
Resumo:
Récemment plusieurs récepteurs couplés aux protéines G (RCPGs) ont été caractérisés au niveau des membranes intracellulaires, dont la membrane nucléaire. Notre objectif était de déterminer si les sous-types de récepteurs β-adrénergiques (βAR) et leurs machineries de signalisation étaient fonctionnels et localisés à la membrane nucléaire des cardiomyocytes. Nous avons démontré la présence des β1AR et β3AR, mais pas du β2AR à la membrane nucléaire de myocytes ventriculaires adultes par immunobuvardage, par microscopie confocale, et par des essais fonctionnels. De plus, certains partenaires de signalisation comme les protéines GαS, Gαi, l’adénylate cyclase II, et V/VI y étaient également localisés. Les sous-types de βAR nucléaires étaient fonctionnels puisqu'ils pouvaient lier leurs ligands et activer leurs effecteurs. En utilisant des noyaux isolés, nous avons observé que l'agoniste non-sélectif isoprotérénol (ISO), et que le BRL37344, un ligand sélectif du β3AR, stimulaient l'initiation de la synthèse de l’ARN, contrairement à l'agoniste sélectif du β1AR, le xamotérol. Cette synthèse était abolie par la toxine pertussique (PTX). Cependant, la stimulation des récepteurs nucléaires de type B de l’endothéline (ETB) causaient une réduction de l'initiation de la synthèse d’ARN. Les voies de signalisations impliquées dans la régulation de la synthèse d’ARN par les RCPGs ont ensuite été étudiées en utilisant des noyaux isolés stimulés par des agonistes en présence ou absence de différents inhibiteurs des voies MAP Kinases (proteines kinases activées par mitogènes) et de la voie PI3K/PKB. Les protéines impliquées dans les voies de signalisation de p38, JNK, ERK MAP Kinase et PKB étaient présents dans les noyaux isolés. L'inhibition de PKB par la triciribine, inhibait la synthèse d’ARN. Nous avons ensuite pu mettre en évidence par qPCR que la stimulation par l’ISO entrainait une augmentation du niveau d'ARNr 18S ainsi qu’une diminution de l'expression d’ARNm de NFκB. En contraste, l’ET-1 n’avait aucun effet sur le niveau d’expression de l’ARNr 18S. Nous avons ensuite montré que la stimulation par l’ISO réduisait l’expression de plusieurs gènes impliqués dans l'activation de NFκB, tandis que l’inhibition de ERK1/2 et PKB renversait cet effet. Un microarray global nous a ensuite permis de démontrer que les βARs et les ETRs nucléaires régulaient un grand nombre de gènes distincts. Finalement, les βARs et ETRs nucléaires augmentaient aussi une production de NO de noyaux isolés, ce qui pouvait être inhibée par le LNAME. Ces résultats ont été confirmés dans des cardiomyocytes intacts en utilisant des analogues cagés et perméables d’ISO et de l'ET-1: l'augmentation de NO nucléaire détectée par DAF2-DA, causée par l'ET-1 et l'ISO, pouvait être prévenue par le LNAME. Finalement, l’augmentation de l’initiation de la transcription induite par l'ISO était aussi bloquée par le L-NAME ou par un inbitheur de PKG, le KT5823, suggérant que la voie NO-GC-PKG est impliquée dans la régulation de la transcription par les βAR. En conclusion, les βARs et les ETRs nucléaires utilisent des voies de signalisation différentes et exercent ainsi des effets distincts sur l’expression des gènes cardiaques. Ils représentent donc une avenue intéressante pour le développement de drogues pharmacologiques.
Resumo:
Le remodelage cardiaque est le processus par lequel la structure ou la fonction cardiaque change en réponse à un déséquilibre pathophysiologique tel qu'une maladie cardiaque, un contexte d'arythmie prolongée ou une modification de l'équilibre hormonal. Le système rénine-angiotensine (SRA) est un système hormonal largement étudié et il est impliqué dans de nombreuses activités associées au remodelage cardiovasculaire. L’existence d'un système circulatoire couplé à un système de tissus locaux est une représentation classique, cependant de nouvelles données suggèrent un SRA indépendant et fonctionnellement actif à l'échelle cellulaire. La compréhension de l'activité intracellulaire du SRA pourrait mener à de nouvelles pistes thérapeutiques qui pourraient prévenir un remodelage cardiovasculaire défavorable. L'objectif de cette thèse était d'élucider le rôle du SRA intracellulaire dans les cellules cardiaques. Récemment, les récepteurs couplés aux protéines G (RCPG), les protéines G et leurs effecteurs ont été détectés sur des membranes intracellulaires, y compris sur la membrane nucléaire, et les concepts de RCPG intracellulaires fonctionnels sont en voie d'être acceptés comme une réalité. Nous avons dès lors fait l'hypothèse que la signalisation du SRA délimitant le noyau était impliquée dans le contrôle de l'expression des gènes cardiaques. Nous avons démontré la présence de récepteurs d'angiotensine de type-1 (AT1R) et de type-2 (AT2R) nucléaires dans les cardiomyocytes ventriculaires adultes et dans une fraction nucléaire purifiée de tissu cardiaque. Des quantités d'Ang II ont été détectées dans du lysat de cardiomyocytes et des microinjections d'Ang-II-FITC ont donné lieu à des liaisons préférentielles aux sites nucléaires. L'analyse transcriptionnelle prouve que la synthèse d'ARN de novo dans des noyaux isolés stimulés à l'Ang-II, et l'expression des ARNm de NF-κB étaient beaucoup plus importants lorsque les noyaux étaient exposés à de l'Ang II par rapport aux cardiomyocytes intacts. La stimulation des AT1R nucléaires a engendré une mobilisation de Ca2+ via les récepteurs de l'inositol trisphosphate (IP3R), et le blocage des IP3R a diminué la réponse transcriptionnelle. Les méthodes disponibles actuellement pour l'étude de la signalisation intracrine sont limitées aux méthodes indirectes. L'un des objectifs de cette thèse était de synthétiser et caractériser des analogues d'Ang-II cellule-perméants afin d’étudier spécifiquement dans les cellules intactes l'activité intracellulaire du SRA. Nous avons synthétisé et caractérisé pharmacologiquement des analogues photosensibles Ang-II encapsulée en incorporant un groupement 4,5-diméthoxy-2-nitrobenzyl (DMNB) photoclivable sur les sites actifs identifiés du peptide. Chacun des trois analogues d'Ang II encapsulée synthétisés et purifiés: [Tyr(DMNB)4]Ang-II, Ang-II-ODMNB et [Tyr(DMNB)4]Ang-II-ODMNB a montré une réduction par un facteur deux ou trois de l'affinité de liaison envers AT1R et AT2R dans les dosages par liaison compétitive et une activité réduite dans la contraction de l'aorte thoracique. La photostimulation de [Tyr(DMNB)4]Ang-II dans des cellules HEK a augmenté la phosphorylation d'ERK1/2 (via AT1R) et la production de cGMP (via AT2R) alors que dans les cardiomyocytes isolés elle générait une augmentation de Ca2+ nucléoplasmique et initiait la synthèse d'ARNr 18S et d'ARNm du NF-κB. Les fibroblastes sont les principaux générateurs de remodelage cardiaque structurel, et les fibroblastes auriculaires sont plus réactifs aux stimuli profibrotiques que les fibroblastes ventriculaires. Nous avons émis l'hypothèse que l’Ang-II intracellulaire et l'activation des AT1R et AT2R nucléaires associés contrôlaient les profils d'expression des gènes des fibroblastes via des systèmes de signalisation distincts et de ce fait jouaient un rôle majeur dans le développement de la fibrose cardiaque. Nous avons remarqué que les fibroblastes auriculaires expriment l’AT1R et l’AT2R nucléaire et l'Ang-II au niveau intracellulaire. L’expression d'AT1R nucléaire a été régulés positivement dans les cas d’insuffisance cardiaque (IC), tandis que l'AT2R nucléaire a été glycosylé post-traductionnellement. La machinerie protéique des protéines G, y compris Gαq/11, Gαi/3, et Gβ, a été observée dans des noyaux isolés de fibroblastes. AT1R et AT2R régulent l'initiation de la transcription du fibroblaste via les voies de transduction de signal d'IP3R et du NO. La photostimulation de [Tyr(DMNB)4]Ang-II dans une culture de fibroblastes auriculaire déclenche la libération de Ca2+ nucléoplasmique, la prolifération, et la synthèse et sécrétion de collagène qui ne sont pas inhibées par les bloqueurs d'AT1R et/ou AT2R extracellulaires.
Resumo:
L'angiotensine-II (Ang-II), synthétisée à partir de sources extracardiaques et intracardiaques, régule l'homéostasie cardiaque en favorisant des effets mitogéniques et en promouvant la croissance cellulaire résultant d’une altération de l'expression génique. Dans cette étude, nous avons évalué la possibilité que les récepteurs de l'angiotensine-1 (AT1) ou les récepteurs de l'angiotensine-2 (AT2) situés sur l'enveloppe nucléaire régulent l’expression génique des cardiomyocytes. En analysant les noyaux cellulaires retenus des fractions de cœur de rat par immunobuvardage Western, nous avons détecté une co-purification préférentielle des protéines AT1 et AT2 avec un marqueur de la membrane nucléaire (Nup 62), par rapport aux marqueurs de la membrane plasmique (Calpactin I), de l’appareil de Golgi (GRP 78) ou du réticulum endoplasmique (GM130). La microscopie confocale a permis de démontrer la présence des AT1 et AT2 dans les membranes nucléaires. La microinjection de l’Ang-II-FITC sur des cardiomyocytes a provoqué une liaison de préférence aux sites nucléaires. Les enregistrements de transients calciques ont illustré que les AT1 nucléaires régulent le relâchement du Ca2+. L’incubation des ligands spécifiques d’AT1 et d’AT2 avec l’UTP [α32P] a résulté en une synthèse de novo d’ARN (par exemple, 16,9 ± 0,5 cpm/ng ADN contrôle vs 162,4 ± 29,7 cpm/ng ADN-Ang II, 219,4 ± 8,2 cpm/ng ADN L -162313 (AT1) et 126,5 ± 8,7 cpm/ng ADN CGP42112A (AT2), P <0,001). L’incubation des noyaux avec Ang-II augmente de façon significative l’expression de NFκB, une réponse qui est réprimée partiellement par la co-administration de valsartan ou de PD123177. Les expériences dose-réponse avec Ang-II administrée à l'ensemble des noyaux purifiés vs. aux cardiomyocytes seuls a montré une augmentation plus importante dans les niveaux d'ARNm de NFκB avec une affinité de ~ 3 fois plus grande (valeurs d’EC50 = 9 contre 28 pmol/L, respectivement), suggérant un rôle préférentiel nucléaire dans la signalisation. Par conséquent, nous avons conclu que les membranes cardiaques nucléaires possèdent des récepteurs d’Ang-II couplés à des voies de signalisation et à la transcription génique. La signalisation nucléaire pourrait jouer un rôle clé dans les changements de l'expression de gènes cardiaques, entraînant ainsi des implications mécanistiques et thérapeutiques diverses.
Resumo:
Le virus herpès simplex de type 1 (HSV 1) affecte la majorité de la population mondiale. HSV 1 cause de multiples symptômes délétères dont les plus communs sont les lésions orofaciales usuellement appelées feux sauvages. Le virus peut aussi causer des effets plus sérieux comme la cécité ou des troubles neurologiques. Le virus réside de façon permanente dans le corps de son hôte. Malgré l’existence de nombreux traitements pour atténuer les symptômes causés par HSV 1, aucun médicament ne peut éliminer le virus. Dans le but d’améliorer les connaissances concernant le cycle viral de HSV 1, ce projet cible l’étude du transport du virus dans la cellule hôte. Ce projet aura permis la collecte d’informations concernant le modus operandi de HSV 1 pour sortir des compartiments cellulaires où il séjourne. Les différentes expérimentations ont permis de publier 3 articles dont un article qui a été choisi parmi les meilleurs papiers par les éditeurs de « Journal of Virology » ainsi qu’un 4e article qui a été soumis. Premièrement, un essai in vitro reproduisant la sortie de HSV 1 du noyau a été mis sur pied, via l’isolation de noyaux issus de cellules infectées. Nous avons démontré que tout comme dans les cellules entières, les capsides s’évadent des noyaux isolés dans l’essai in vitro en bourgeonnant avec la membrane nucléaire interne, puis en s’accumulant sous forme de capsides enveloppées entre les deux membranes nucléaires pour finalement être relâchées dans le cytoplasme exclusivement sous une forme non enveloppée. Ces observations appuient le modèle de transport de dé-enveloppement/ré-enveloppement. Deuxièmement, dans le but d’identifier des joueurs clefs viraux impliqués dans la sortie nucléaire du virus, les protéines virales associées aux capsides relâchées par le noyau ont été examinées. La morphologie multicouche du virus HSV 1 comprend un génome d’ADN, une capside, le tégument et une enveloppe. Le tégument est un ensemble de protéines virales qui sont ajoutées séquentiellement sur la particule virale. La séquence d’ajout des téguments de même que les sites intracellulaires où a lieu la tégumentation sont l’objet d’intenses recherches. L’essai in vitro a été utilisé pour étudier cette tégumentation. Les données recueillies suggèrent un processus séquentiel qui implique l’acquisition des protéines UL36, UL37, ICP0, ICP8, UL41, UL42, US3 et possiblement ICP4 sur les capsides relâchées par le noyau. Troisièmement, pour obtenir davantage d’informations concernant la sortie de HSV 1 des compartiments membranaires de la cellule hôte, la sortie de HSV 1 du réseau trans golgien (TGN) a aussi été étudiée. L’étude a révélé l’implication de la protéine kinase D cellulaire (PKD) dans le transport post-TGN de HSV 1. PKD est connue pour réguler le transport de petits cargos et son implication dans le transport de HSV 1 met en lumière l’utilisation d’une machinerie commune pour le transport des petits et gros cargos en aval du TGN. Le TGN n’est donc pas seulement une station de triage, mais est aussi un point de rencontre pour différentes voies de transport intracellulaire. Tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation du virus HSV 1, ce qui pourrait mener au développement de meilleurs traitements pour combattre le virus. Les données amassées concernant le virus HSV 1 pourraient aussi être appliquées à d’autres virus. En plus de leur pertinence dans le domaine de la virologie, les découvertes issues de ce projet apportent également de nouveaux détails au niveau du transport intracellulaire.
Resumo:
Le dogme voulant que les récepteurs couplés aux protéines G (GPCRs) activent des voies de signalisation seulement lorsqu’ils sont localisés à la membrane plasmatique, a récemment été remis en question. Des données récentes indiquent que certains GPCRs peuvent également induire une réponse intracellulaire à partir des compartiments intracellulaires dont le noyau. Les récepteurs activés par la protéase (PAR) sont des membres de la famille GPCR. Les PARs sont activés par le clivage de la partie N–terminale du récepteur ce qui permet au ligand attaché sur le récepteur de se lier à sa poche réceptrice. Quatre PARs ont été décrits : PAR1, PAR2, PAR3 et PAR4. PAR2 peut susciter des effets mitogéniques et participer aux processus comme l’angiogenèse et l'inflammation. Alors que beaucoup d'effets intracellulaires de PAR2 peuvent être expliqués lorsqu’il est localisé à la membrane plasmatique, une fonction intracrine de PAR2 a aussi été proposée. Pourtant les mécanismes par lesquels PAR2 peut provoquer l’expression de gènes ciblés sont toujours inconnus. Le but de notre étude était de vérifier l’existence d’une population nucléaire de PAR2. Nous avons également émis l’hypothèse que les voies activées par l’activation de PAR2 dépendent de sa localization cellulaire. En utilisant des techniques de microscopie confocale et de "Western Blot" nous avons démontré la présence d’une population nucléaire de PAR2. À la suite de la stimulation de PAR2, nous avons observé une augmentation de la translocation du récepteur de la membrane plasmatique au noyau. En utilisant la technique de "RT – PCR", nous avons observé des rôles différents de PAR2 à la surface de la cellule et du noyau dans l’initiation de l’expression des gènes. Afin d’identifier les mécanismes responsables de la translocation nucléaire de PAR2, nous avons évalué l’implication des membres de la famille de "Sorting Nexins (SNX)" dans la translocation nucléaire de PAR2. "Sorting Nexins" est un groupe de protéines avec des fonctions de transport bien établies. SNX1 et SNX2 ont été identifiés comme responsables du transfert de PAR1 vers les lysosomes. SNX11 n'a pas encore été étudié et nous avons émis l’hypothèse qu'il pourrait être un autre membre de la famille des SNX impliqué dans la signalisation de PAR2. Pour ce faire, nous avons développé des "knockdowns" stables pour SNX1, SNX2 et SNX11 dans les cellules HEK293. En utilisant les essais d’immunofluorescence, "Western Blot" et de cytométrie en flux, nous avons déterminé que tous les trois membres du groupe SNX sont des partenaires d'interaction de PAR2. Toutefois, seul SNX11 se co-localise avec son partenaire au noyau et est responsable de sa translocation nucléaire. Les expériences de "RT - PCR" sur les lignées de cellule de SNXs "knockdowns" ont démontré que la fonction de PAR2 nucléaire dépend surtout de SNX11; néanmoins SNX1 et SNX2 peuvent aussi l’influencer, suggérant qu'ils font aussi partie du réseau signalétique de PAR2. En conclusion, PAR2 est déplacé de la membrane plasmatique à la membrane nucléaire après sa stimulation avec un agoniste. La translocation nucléaire de PAR2 par un mécanisme impliquant SNX11, initie des effets intracellulaires différents de sa signalisation membranaire. Mots clés : récepteurs couplés à la protéine G, “Sorting Nexins”, récepteurs activés par la protéase, translocation nucléaire, membrane nucléaire, signal nucléaire.
Resumo:
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus.
Resumo:
L’autophagie est un processus cellulaire catabolique qui a été conservé durant l’évolution de la levure à l’homme. Cet important mécanisme consiste en une dégradation des composants cytoplasmiques dans une structure lytique, le lysosome. Il existe trois types de l’autophagie : la microautophagie, l’autophagie médiée par les chaperones et la macroautophagie nommée « autophagie ». Il a été démontré que lors de l’autophagie, le matériel cytoplasmique (protéines cytosoliques et organites) est séquestré dans l’autophagosome qui finit par fusionner avec le lysosome, formant ainsi l’autophagolysosome. Le matériel séquestré et la membrane interne de l’autophagosome seront dégradés par les hydrolases lysosomales. Plusieurs études se sont focalisées sur la détermination de la machinerie moléculaire et les mécanismes de l’autophagie. Il a été démontré l’implication de 31 molécules Atg essentielles dans le processus de l’autophagie. L’identification de ces protéines a permis de déceler le rôle de l’autophagie non seulement dans le maintien de l’homéostasie cellulaire mais aussi dans la défense contre les agents pathogènes. En effet, l’autophagie joue un rôle important dans l’immunité innée conduisant à contrôler l’évasion des pathogènes dont les bactéries et les virus. Également, l’autophagie est impliquée dans l’immunité adaptative en favorisant la présentation des antigènes viraux par le CMH de classe II aux cellules T CD4+. De plus, une étude récente suggère que l’autophagie contribue à la présentation antigénique par le CMH de classe I aux cellules T CD8+ durant une infection virale par le virus HSV-1 (Herpes simplex type 1). Toutefois, certains virus y compris HSV-1 ont pu développer des mécanismes pour contourner et inhiber en partie le rôle protecteur de l’autophagie. Récemment, une étude dans notre laboratoire a mis en évidence, lors d’une infection virale par HSV-1 des cellules macrophages BMA, la présence d’une nouvelle structure autophagique dans une phase tardive de l’infection. Cette nouvelle structure est différente des autophagosomes classiques à double membrane et est caractérisée morphologiquement par quatre membranes dérivées de l’enveloppe nucléaire interne et externe. Peu de choses ont été rapportées sur cette nouvelle voie autophagique qui peut être un mécanisme de défense cellulaire quand l’autophagie classique dans le cytosol est inhibée par HSV-1. Il devient donc intéressant de caractériser les molécules impliquées dans la formation de ces autophagosomes issus du noyau par spectrométrie de masse. Pour ce faire, il était impératif d’établir un outil d’isolation des noyaux à partir de macrophages infectés par HSV-1 dans lesquels les autophagosomes issus des noyaux seront formés. La validation de cette méthode d’isolation a été effectuée en déterminant la pureté et l’intégrité des noyaux isolés à partir des cellules non infectées (contrôle) et infectées par HSV-1. La pureté des préparations de noyaux isolés a été caractérisée par l’absence de contaminants cellulaires et un enrichissement en noyaux. Également, il a fallu déterminer la cinétique de formation des autophagosomes issus des noyaux pour les deux lignées cellulaires de macrophages utilisées dans ce projet. Dans une perspective future, l’analyse protéomique à partir des échantillons purs des noyaux isolés (non infectés et infectés) mènera à identifier les protéines impliquées dans la formation des autophagosomes dérivés des noyaux, ce qui permettra ultérieurement d’effectuer des études sur les mécanismes moléculaires et les fonctions de cette nouvelle voie autophagique.
Resumo:
L’ostéoarthrose (OA) est une maladie articulaire dont l’incidence augmente avec le vieillissement de la population. Elle se caractérise par une détérioration progressive du cartilage articulaire accompagnée du remodelage de l’os sous-chondral et du changement des tissus mous de l’articulation. La douleur et le dysfonctionnement de l’articulation affectée sont généralement attribués à l’inflammation et l’épanchement de la synovie. Plusieurs évidences indiquent que l’inflammation de la membrane synoviale contribue grandement à la pathogenèse de l’OA. En effet, la synthèse et l’expression des enzymes protéolytiques qui dégradent la matrice cartilagineuse sont régulées par de nombreuses cytokines retrouvées au sein de ce foyer inflammatoire. Deux d’entre elles, l’interleukine-1 beta (IL-1β) et le «tumor necrosis factor » alpha (TNF-α), jouent un rôle majeur dans le déclenchement de l’inflammation associée à l’OA. Ces cytokines pro-inflammatoires agissent notamment sur les synoviocytes et les chondrocytes en activant NF-κB qui, à son tour, active les gènes de cytokines. Cette boucle de régulation positive amplifie et perpétue la réponse inflammatoire. Récemment, il a été rapporté que l’activation de NF-κB par TNF-α peut être potentialisée par EXTL3, un récepteur transmembranaire ; mais le mécanisme sous-jacent de cet effet demeure inconnu. Toutefois, les niveaux important d’EXTL3 et de son ligand Reg1B chez les patients arthrosiques, laissent croire que ces protéines jouent un rôle dans le développement de l’OA. Notre objectif était d’étudier le mécanisme par lequel EXTL3 amplifie l’activation de NF-κB par TNF-α et d’examiner si ce phénomène se produit aussi avec l’IL-1β. Nous avons utilisé les cellules C28/I2, une lignée cellulaire de chondrocytes, comme modèle d’étude. Les transfections transitoires avec un vecteur d’expression, les techniques d’immunofluorescence (IF), d’immunoprécipitation (IP) et d’immunobuvardage de type Western (IB); ont été utilisées dans le cadre de diverses approches expérimentales. Les résultats obtenus par transfection ont révélé que la protéine EXTL3 potentialisait l’activation de NF-κB aussi bien par IL-1β que par TNF-α. Ce résultat signifie que la potentialisation de l’activité NF-κB par EXTL3 n’est pas spécifique à TNF-α. D’autre part, l’IP avec TNFRI et TRAF2 a révélé la présence d’EXTL3 dans le complexe TNF-α/TNFRI/TRAF2 qui se forme au niveau de la membrane plasmique. De plus, ceci a été confirmé in vivo par microscopie confocale montrant la co-localisation de TNFRI-TRAF2-EXTL3 dans la membrane nucléaire, suggérant ainsi la formation d’un complexe identique au niveau des membranes plasmique et nucléaires. Toutefois, la présence du ligand Reg1B et/ou de la glucosamine inhibait la formation de ce complexe au niveau de la membrane plasmique, tout comme ils abolissaient la potentialisation de l’activité NF-κB par EXTL3. Ces résultats suggèrent non seulement que le recrutement d’EXTL3 libre dans le complexe TNF-α/TNFR1 est requis pour amplifier l’activation de NF-κB par TNF-α, mais aussi la capacité du ligand Reg1B et de la glucosamine à moduler cette activation à travers la baisse ou l’inhibition de l’interaction EXTL3-TNFR1. Les données de cette étude constituent une avancée majeure dans la compréhension des événements moléculaires qui contrôlent l’activation de NF-κB par les cytokines pro-inflammatoires. Ces résultats pourraient conduire au développement de nouvelles approches thérapeutiques pour le traitement de l’inflammation associée à l’OA et impliquant une activation incessante de NF-κB.
Resumo:
La technique de clonage par transfert nucléaire de cellules somatiques (SCNT) présente une page importante dans les annales scientifiques, mais son application pratique demeure incertaine dû à son faible taux de succès. Les anomalies placentaires et de développement fœtal se traduisent par des pertes importantes de gestation et des mortalités néonatales. Dans un premier temps, la présente étude a caractérisé les changements morphologiques des membranes fœtales durant la gestation clonée en les comparant à des gestations contrôles obtenues à partir de l’insémination artificielle. Les différentes anomalies morphologiques des placentomes telles que l’œdème chorioallantoique, la présence de zones hyperéchoiques et irrégulières dans la membrane amniotique et la présence de cellules inflammatoires dégénérées compromettent le développement fœtal normal de la gestation clonée. L’examen ultrasonographique représente une technique diagnostique importante pour faire le suivi d’une gestation et de caractériser les changements placentaires dans le cadre d’évaluation globale du bien-être fœtal. Le profil hormonal de trois stéroïdes (progestérone (P4), estrone sulfate (E1S), et œstradiol (E2)) et de la protéine B spécifique de gestation (PSPB) dans le sérum des vaches porteuses de clones SCNT a été déterminé et associé aux anomalies de gestations clonées. Une diminution de la P4 sérique au jour 80, une élévation du niveau de la concentration de la PSPB au jour 150, et une augmentation de la concentration d’E2 sérique durant le deuxième et troisième tiers de la gestation clonée coïncident avec les anomalies de gestation déjà reportées. Ces changements du profil hormonal associés aux anomalies phénotypiques du placenta compromettent le déroulement normal de la gestation clonée et gênent le développement et le bien-être fœtal. Sur la base des observations faites sur le placenta de gestation clonée, le mécanisme moléculaire pouvant expliquer la disparition de l’épithélium du placenta (l’interface entre le tissue maternel et le placenta) a été étudié. L’étude a identifié des changements dans l’expression de deux protéines d’adhérence (E-cadhérin et β-catenin) de cellules épithéliales pouvant être associées aux anomalies du placenta chez les gestations clonées. Le tissu de cotylédons provenant de gestations clonées et contrôles a été analysé par Western blot, RT-PCR quantitatif, et par immunohistochimie. Les résultats présentaient une diminution significative (p<0.05) de l’expression des dites protéines dans les cellules trophoblastiques chez les gestations clonées. Le RT-PCR quantitatif démontrait que les gènes CCND1, CLDN1 et MSX1 ciblés par la voie de signalisation de la Wnt/β-catenin étaient significativement sous exprimés. La diminution de l’expression des protéines E-cadherin et β-catenin avec une réduction de l’activation de la protéine β-catenin durant le période d’attachement de l’embryon peut potentiellement expliquer l’absence totale ou partielle de l’attachement des membranes fœtales au tissu maternel et éventuellement, l’insuffisance placentaire caractéristique des gestations clonées chez la vache. La caractérisation morphologique et fonctionnelle du placenta durant les gestations clonées à haut risque est essentielle pour évaluer le statut de la gestation. Les résultats de la présente étude permettront de prédire le développement et le bien-être fœtal de façon critique à travers un protocole standardisé et permettre des interventions médicales pour améliorer le taux de succès des gestations clonées chez les bovins.