8 resultados para non-separable utility
em Université de Montréal, Canada
Resumo:
This paper develops a general stochastic framework and an equilibrium asset pricing model that make clear how attitudes towards intertemporal substitution and risk matter for option pricing. In particular, we show under which statistical conditions option pricing formulas are not preference-free, in other words, when preferences are not hidden in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull and White (HW) pricing formulas. The dependence of option prices on preference parameters comes from several instantaneous causality effects such as the so-called leverage effect. We also emphasize that the most standard asset pricing models (CAPM for the stock and BS or HW preference-free option pricing) are valid under the same stochastic setting (typically the absence of leverage effect), regardless of preference parameter values. Even though we propose a general non-preference-free option pricing formula, we always keep in mind that the BS formula is dominant both as a theoretical reference model and as a tool for practitioners. Another contribution of the paper is to characterize why the BS formula is such a benchmark. We show that, as soon as we are ready to accept a basic property of option prices, namely their homogeneity of degree one with respect to the pair formed by the underlying stock price and the strike price, the necessary statistical hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This BS-shaped option-pricing formula allows us to derive interesting characterizations of the volatility smile, that is, the pattern of BS implicit volatilities as a function of the option moneyness. First, the asymmetry of the smile is shown to be equivalent to a particular form of asymmetry of the equivalent martingale measure. Second, this asymmetry appears precisely when there is either a premium on an instantaneous interest rate risk or on a generalized leverage effect or both, in other words, whenever the option pricing formula is not preference-free. Therefore, the main conclusion of our analysis for practitioners should be that an asymmetric smile is indicative of the relevance of preference parameters to price options.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
The concept of Ambiguity designates those situations where the information available to the decision maker is insufficient to form a probabilistic view of the world. Thus, it has provided the motivation for departing from the Subjective Expected Utility (SEU) paradigm. Yet, the formalization of the concept is missing. This is a grave omission as it leaves non-expected utility models hanging on a shaky ground. In particular, it leaves unanswered basic questions such as: (1) Does Ambiguity exist?; (2) If so, which situations should be labeled as "ambiguous"?; (3) Why should one depart from Subjective Expected Utility (SEU) in the presence of Ambiguity?; and (4) If so, what kind of behavior should emerge in the presence of Ambiguity? The present paper fills these gaps. Specifically, it identifies those information structures that are incompatible with SEU theory, and shows that their mathematical properties are the formal counterpart of the intuitive idea of insufficient information. These are used to give a formal definition of Ambiguity and, consequently, to distinguish between ambiguous and unambiguous situations. Finally, the paper shows that behavior not conforming to SEU theory must emerge in correspondence of insufficient information and identifies the class of non-EU models that emerge in the face of Ambiguity. The paper also proposes a new comparative definition of Ambiguity, and discusses its relation with some of the existing literature.
Resumo:
A classical argument of de Finetti holds that Rationality implies Subjective Expected Utility (SEU). In contrast, the Knightian distinction between Risk and Ambiguity suggests that a rational decision maker would obey the SEU paradigm when the information available is in some sense good, and would depart from it when the information available is not good. Unlike de Finetti's, however, this view does not rely on a formal argument. In this paper, we study the set of all information structures that might be availabe to a decision maker, and show that they are of two types: those compatible with SEU theory and those for which SEU theory must fail. We also show that the former correspond to "good" information, while the latter correspond to information that is not good. Thus, our results provide a formalization of the distinction between Risk and Ambiguity. As a consequence of our main theorem (Theorem 2, Section 8), behavior not-conforming to SEU theory is bound to emerge in the presence of Ambiguity. We give two examples of situations of Ambiguity. One concerns the uncertainty on the class of measure zero events, the other is a variation on Ellberg's three-color urn experiment. We also briefly link our results to two other strands of literature: the study of ambiguous events and the problem of unforeseen contingencies. We conclude the paper by re-considering de Finetti's argument in light of our findings.
Resumo:
Let 'epsilon' be a class of event. Conditionally Expected Utility decision makers are decision makers whose conditional preferences ≿E, E є 'epsilon', satisfy the axioms of Subjective Expected Utility theory (SEU). We extend the notion of unconditional preference that is conditionally EU to unconditional preferences that are not necessarily SEU. We give a representation theorem for a class of such preferences, and show that they are Invariant Bi-separable in the sense of Ghirardato et al.[7]. Then, we consider the special case where the unconditional preference is itself SEU, and compare our results with those of Fishburn [6].
Resumo:
Full Text / Article complet
Resumo:
This paper discusses the problem of optimal design of a jurisdiction structure from the view point of a utilitarian social planner when individuals with identical utility functions for a non-rival public good and private consumption have private information about their contributive capacities. It shows that the superiority of a centralized provision of a non-rival public good over a federal one does not always hold. Specifically, when differences in individuals’ contributive capacities are large, it is better to provide the public good in several distinct jurisdictions rather than to pool these jurisdictions into a single one. In the specific situation where individuals have logarithmic utilities, the paper provides a complete characterization of the optimal jurisdiction structure in the two-type case.