4 resultados para nitrogen metabolism

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce projet a pour but d’évaluer la capacité de la voie des pentoses phosphates (VPP) dans les racines transgéniques de pomme de terre (Solanum tuberosum) modifiées pour exprimer différents niveaux de l'hexokinase (HK) et de la triosephosphate isomérase cytosolique (cTPI). Dans les racines, la VPP alimente la voie de l’assimilation de l’azote en equivalents réducteurs et permet donc la biosynthèse des acides aminés. Le glucose-6-phosphate produit par l’HK est consommé par la partie oxydative de la VPP catalysée par la glucose-6-phosphate déshydrogénase (G6PDH) et la 6-phosphogluconate déshydrogénase (6PGDH). Les changements dans l'expression de HK et cTPI peuvent affecter le fonctionnement de la VPP et les mécanismes qui sont liés à l’utilisation des équivalents réducteurs produits par la VPP, comme l'assimilation de l’azote et la synthèse des acides aminés. Afin d’évaluer l’effet des manipulations génétiques de l’HK et de la cTPI sur l’assimilation de l’azote, nous avons cultivé les racines transgéniques sur des milieux contenant des concentrations élevées (7 mM) ou basses (0,7 mM) de nitrate d’ammonium comme source d’azote. Les résultats montrent que la culture sur un milieu riche en azote induit les activités G6PDH et 6PGDH. Les données montrent que la capacité de la VPP est plus grande avec des niveaux élevés en HK ou en cTPI. Nous avons aussi pu démontrer une plus grande activité spécifique de l’HK dans les conditions pauvres en azote. Ces données ont été complémentées par des mesures des pools d’acides aminés dans les racines transgéniques cultivées sur différents niveaux d’azote. Aucune tendance notable des pools d’acides aminés n’a été remarquée dans les racines modifiées pour leur contenu en HK suggèrant que la manipulation de HK n’affecte pas l'assimilation de l’azote. Dans les racines transgéniques modifiées pour la cTPI, les ratios Gln/Glu et Asn/Asp sont plus élevés chez les clones antisens, indiquant une assimilation de l’azote plus élevée. Ces résultats ont démontré l'activation de l'assimilation de l’azote chez les clones antisens cTPI dans les conditions élevées et basses d’azote alors que la manipulation de l’HK n’affecte pas l’assimilation de l’azote.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’atmosphère terrestre est très riche en azote (N2). Mais cet azote diatomique est sous une forme très stable, inutilisable par la majorité des êtres vivants malgré qu’il soit indispensable pour la synthèse de matériels organiques. Seuls les procaryotes diazotrophiques sont capables de vivre avec le N2 comme source d’azote. La fixation d’azote est un processus qui permet de produire des substances aminées à partir de l’azote gazeux présent dans l’atmosphère (78%). Cependant, ce processus est très complexe et nécessite la biosynthèse d’une vingtaine de protéines et la consommation de beaucoup d’énergie (16 molécules d’ATP par mole de N2 fixé). C’est la raison pour laquelle ce phénomène est rigoureusement régulé. Les bactéries photosynthétiques pourpres non-sulfureuses sont connues pour leur capacité de faire la fixation de l’azote. Les études faites à la lumière, dans le mode de croissance préféré de ces bactéries (photosynthèse anaérobie), ont montré que la nitrogénase (enzyme responsable de la fixation du diazote) est sujet d’une régulation à trois niveaux: une régulation transcriptionnelle de NifA (protéine activatrice de la transcription des gènes nif), une régulation post-traductionnelle de l’activité de NifA envers l’activation de la transcription des autres gènes nif, et la régulation post-traductionnelle de l’activité de la nitrogénase quand les cellules sont soumises à un choc d’ammoniaque. Le système de régulation déjà décrit fait intervenir essentiellement une protéine membranaire, AmtB, et les deux protéines PII, GlnB et GlnK. Il est connu depuis long temps que la nitrogénase est aussi régulée quand une culture photosynthétique est exposée à la noirceur, mais jusqu’aujourd’hui, on ignore encore la nature des systèmes intervenants dans cette régulation. Ainsi, parmi les questions qui peuvent se poser: quelles sont les protéines qui interviennent dans l’inactivation de la nitrogénase lorsqu’une culture anaérobie est placée à la noirceur? Une analyse de plusieurs souches mutantes, amtB- , glnK- , glnB- et amtY- poussées dans différentes conditions de limitation en azote, serait une façon pour répondre à ces interrogations. Alors, avec le suivi de l’activité de la nitrogénase et le Western Blot, on a montré que le choc de noirceur provoquerait un "Switch-off" de l’activité de la nitrogénase dû à une ADP-ribosylation de la protéine Fe. On a réussit aussi à montrer que ii tout le système déjà impliqué dans la réponse à un choc d’ammoniaque, est également nécessaire pour une réponse à un manque de lumière ou d’énergie (les protéines AmtB, GlnK, GlnB, DraG, DraT et AmtY). Or, Rhodobacter capsulatus est capable de fixer l’azote et de croitre aussi bien dans la micro-aérobie à la noirceur que dans des conditions de photosynthèse anaérobies, mais jusqu'à maintenant sa régulation dans l’obscurité est peu étudiée. L’étude de la fixation d’azote à la noirceur nous a permis de montrer que le complexe membranaire Rnf n’est pas nécessaire à la croissance de R. capsulatus dans de telles conditions. Dans le but de développer une façon d’étudier la régulation de la croissance dans ce mode, on a tout d’abord essayé d’identifier les conditions opératoires (O2, [NH4 + ]) permettant à R. capsulatus de fixer l’azote en microaérobie. L’optimisation de cette croissance a montré que la concentration optimale d’oxygène nécessaire est de 10% mélangé avec de l’azote.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'azote est l'un des éléments les plus essentiels dans le monde pour les êtres vivants, car il est essentiel pour la production des éléments de base de la cellule, les acides aminés, les acides nucléiques et les autres constituants cellulaires. L’atmosphère est composé de 78% d'azote gazeux, une source d'azote inutilisable par la plupart des organismes à l'exception de ceux qui possèdent l’enzyme nitrogénase, tels que les bactéries diazotrophique. Ces micro-organismes sont capables de convertir l'azote atmosphérique en ammoniac (NH3), qui est l'une des sources d'azote les plus préférables. Cette réaction exigeant l’ATP, appelée fixation de l'azote, est catalysée par une enzyme, nitrogénase, qui est l'enzyme la plus importante dans le cycle de l'azote. Certaines protéines sont des régulateurs potentiels de la synthèse de la nitrogénase et de son activité; AmtB, DraT, DraG, les protéines PII, etc.. Dans cette thèse, j'ai effectué diverses expériences afin de mieux comprendre leurs rôles détailés dans Rhodobacter capsulatus. La protéine membranaire AmtB, très répandue chez les archaea, les bactéries et les eucaryotes, est un membre de la famille MEP / Amt / Rh. Les protéines AmtB sont des transporteurs d'ammonium, importateurs d'ammonium externe, et ont également été suggéré d’agir comme des senseurs d'ammonium. Il a été montré que l’AmtB de Rhodobacter capsulatus fonctionne comme un capteur pour détecter la présence d'ammonium externe pour réguler la nitrogénase. La nitrogénase est constituée de deux métalloprotéines nommées MoFe-protéine et Fe-protéine. L'addition d'ammoniaque à une culture R. capsulatus conduit à une série de réactions qui mènent à la désactivation de la nitrogénase, appelé "nitrogénase switch-off". Une réaction critique dans ce processus est l’ajout d’un groupe ADP-ribose à la Fe-protéine par DraT. L'entrée de l'ammoniac dans la cellule à travers le pore AmtB est contrôlée par la séquestration de GlnK. GlnK est une protéine PII et les protéines PII sont des protéines centrales dans la régulation du métabolisme de l'azote. Non seulement la séquestration de GlnK par AmtB est importante dans la régulation nitrogénase, mais la liaison de l'ammonium par AmtB ou de son transport partiel est également nécessaire. Les complexes AmtB-GlnK sont supposés de lier DraG, l’enzyme responsable pour enlever l'ADP-ribose ajouté à la nitrogénase par DraT, ainsi formant un complexe ternaire. Dans cette thèse certains détails du mécanisme de transduction du signal et de transport d'ammonium ont été examinés par la génération et la caractérisation d’un mutant dirigé, RCZC, (D335A). La capacité de ce mutant, ainsi que des mutants construits précédemment, RCIA1 (D338A), RCIA2 (G344C), RCIA3 (H193E) et RCIA4 (W237A), d’effectuer le « switch-off » de la nitrogénase a été mesurée par chromatographie en phase gazeuse. Les résultats ont révélé que tous les résidus d'acides aminés ci-dessus ont un rôle essentiel dans la régulation de la nitrogénase. L’immunobuvardage a également été effectués afin de vérifier la présence de la Fe-protéine l'ADP-ribosylée. D335, D388 et W237 semblent être cruciales pour l’ADP-ribosylation, puisque les mutants RCZC, RCIA1 et RCIA4 n'a pas montré de l’ADP-ribosylation de la Fe-protéine. En outre, même si une légère ADP-ribosylation a été observée pour RCIA2 (G344C), nous le considérons comme un résidu d'acide aminé important dans la régulation de la nitrogénase. D’un autre coté, le mutant RCIA3 (H193E) a montré une ADP-ribosylation de la Fe-protéine après un choc d'ammonium, par conséquent, il ne semble pas jouer un rôle important dans l’ADP-ribosylation. Par ailleurs R. capsulatus possède une deuxième Amt appelé AmtY, qui, contrairement à AmtB, ne semble pas avoir des rôles spécifiques. Afin de découvrir ses fonctionnalités, AmtY a été surexprimée dans une souche d’E. coli manquant l’AmtB (GT1001 pRSG1) (réalisée précédemment par d'autres membres du laboratoire) et la formation des complexes AmtY-GlnK en réponse à l'addition d’ammoniac a été examinée. Il a été montré que même si AmtY est en mesure de transporter l'ammoniac lorsqu'il est exprimé dans E. coli, elle ne peut pass’ associer à GlnK en réponse à NH4 +.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les dinoflagellés sont des eucaryotes unicellulaires retrouvés dans la plupart des écosystèmes aquatiques du globe. Ces organismes amènent une contribution substantielle à la production primaire des océans, soit en tant que membre du phytoplancton, soit en tant que symbiontes des anthozoaires formant les récifs coralliens. Malheureusement, ce rôle écologique majeur est souvent négligé face à la capacité de certaines espèces de dinoflagellés à former des fleurs d'eau, parfois d'étendue et de durée spectaculaires. Ces floraisons d'algues, communément appelées "marées rouges", peuvent avoir de graves conséquences sur les écosystèmes côtiers, sur les industries de la pêche et du tourisme, ainsi que sur la santé humaine. Un des facteurs souvent corrélé avec la formation des fleurs d'eau est une augmentation dans la concentration de nutriments, notamment l’azote et le phosphore. Le nitrate est un des composants principaux retrouvés dans les eaux de ruissellement agricoles, mais également la forme d'azote bioaccessible la plus abondante dans les écosystèmes marins. Ainsi, l'agriculture humaine a contribué à magnifier significativement les problèmes associés aux marées rouges au niveau mondial. Cependant, la pollution ne peut pas expliquer à elle seule la formation et la persistance des fleurs d'eau, qui impliquent plusieurs facteurs biotiques et abiotiques. Il est particulièrement difficile d'évaluer l'importance relative qu'ont les ajouts de nitrate par rapport à ces autres facteurs, parce que le métabolisme du nitrate chez les dinoflagellés est largement méconnu. Le but principal de cette thèse vise à remédier à cette lacune. J'ai choisi Lingulodinium polyedrum comme modèle pour l'étude du métabolisme du nitrate, parce que ce dinoflagellé est facilement cultivable en laboratoire et qu'une étude transcriptomique a récemment fourni une liste de gènes pratiquement complète pour cette espèce. Il est également intéressant que certaines composantes moléculaires de la voie du nitrate chez cet organisme soient sous contrôle circadien. Ainsi, dans ce projet, j'ai utilisé des analyses physiologiques, biochimiques, transcriptomiques et bioinformatiques pour enrichir nos connaissances sur le métabolisme du nitrate des dinoflagellés et nous permettre de mieux apprécier le rôle de l'horloge circadienne dans la régulation de cette importante voie métabolique primaire. Je me suis tout d'abord penché sur les cas particuliers où des floraisons de dinoflagellés sont observées dans des conditions de carence en azote. Cette idée peut sembler contreintuitive, parce que l'ajout de nitrate plutôt que son épuisement dans le milieu est généralement associé aux floraisons d'algues. Cependant, j’ai découvert que lorsque du nitrate était ajouté à des cultures initialement carencées ou enrichies en azote, celles qui s'étaient acclimatées au stress d'azote arrivaient à survivre près de deux mois à haute densité cellulaire, alors que les cellules qui n'étaient pas acclimatées mourraient après deux semaines. En condition de carence d'azote sévère, les cellules arrivaient à survivre un peu plus de deux semaines et ce, en arrêtant leur cycle cellulaire et en diminuant leur activité photosynthétique. L’incapacité pour ces cellules carencées à synthétiser de nouveaux acides aminés dans un contexte où la photosynthèse était toujours active a mené à l’accumulation de carbone réduit sous forme de granules d’amidon et corps lipidiques. Curieusement, ces deux réserves de carbone se trouvaient à des pôles opposés de la cellule, suggérant un rôle fonctionnel à cette polarisation. La deuxième contribution de ma thèse fut d’identifier et de caractériser les premiers transporteurs de nitrate chez les dinoflagellés. J'ai découvert que Lingulodinium ne possédait que très peu de transporteurs comparativement à ce qui est observé chez les plantes et j'ai suggéré que seuls les membres de la famille des transporteurs de nitrate de haute affinité 2 (NRT2) étaient réellement impliqués dans le transport du nitrate. Le principal transporteur chez Lingulodinium était exprimé constitutivement, suggérant que l’acquisition du nitrate chez ce dinoflagellé se fondait majoritairement sur un système constitutif plutôt qu’inductible. Enfin, j'ai démontré que l'acquisition du nitrate chez Lingulodinium était régulée par la lumière et non par l'horloge circadienne, tel qu'il avait été proposé dans une étude antérieure. Finalement, j’ai utilisé une approche RNA-seq pour vérifier si certains transcrits de composantes impliquées dans le métabolisme du nitrate de Lingulodinium étaient sous contrôle circadien. Non seulement ai-je découvert qu’il n’y avait aucune variation journalière dans les niveaux des transcrits impliqués dans le métabolisme du nitrate, j’ai aussi constaté qu’il n’y avait aucune variation journalière pour n’importe quel ARN du transcriptome de Lingulodinium. Cette découverte a démontré que l’horloge de ce dinoflagellé n'avait pas besoin de transcription rythmique pour générer des rythmes physiologiques comme observé chez les autres eukaryotes.