5 resultados para nanostructured SnO2

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’utilisation de nanovecteurs pour la livraison contrôlée de principes actifs est un concept commun de nous jours. Les systèmes de livraison actuels présentent encore cependant des limites au niveau du taux de relargage des principes actifs ainsi que de la stabilité des transporteurs. Les systèmes composés à la fois de nanovecteurs (liposomes, microgels et nanogels) et d’hydrogels peuvent cependant permettre de résoudre ces problèmes. Dans cette étude, nous avons développé un système de livraison contrôlé se basant sur l’incorporation d’un nanovecteur dans une matrice hydrogel dans le but de combler les lacunes des systèmes se basant sur un vecteur uniquement. Une telle combinaison pourrait permettre un contrôle accru du relargage par stabilisation réciproque. Plus spécifiquement, nous avons développé un hydrogel structuré intégrant des liposomes, microgels et nanogels séparément chargés en principes actifs modèles potentiellement relargués de manière contrôlé. Ce contrôle a été obtenu par la modification de différents paramètres tels que la température ainsi que la composition et la concentration en nanovecteurs. Nous avons comparé la capacité de chargement et la cinétique de relargage de la sulforhodamine B et de la rhodamine 6G en utilisant des liposomes de DOPC et DPPC à différents ratios, des nanogels de chitosan/acide hyaluronique et des microgels de N-isopropylacrylamide (NIPAM) à différents ratios d’acide méthacrylique, incorporés dans un hydrogel modèle d’acrylamide. Les liposomes présentaient des capacités de chargement modérés avec un relargage prolongé sur plus de dix jours alors que les nanogels présentaient des capacités de chargement plus élevées mais une cinétique de relargage plus rapide avec un épuisement de la cargaison en deux jours. Comparativement, les microgels relarguaient complétement leur contenu en un jour. Malgré une cinétique de relargage plus rapide, les microgels ont démontré la possibilité de contrôler finement le chargement en principe actif. Ce contrôle peut être atteint par la modification des propriétés structurelles ou en changeant le milieu d’incubation, comme l’a montré la corrélation avec les isothermes de Langmuir. Chaque système développé a démontré un potentiel contrôle du taux de relargage, ce qui en fait des candidats pour des investigations futures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Une compréhension approfondie et un meilleur contrôle de l'auto-assemblage des copolymères diblocs (séquencés) et de leurs complexes à l'interface air/eau permettent la formation contrôlée de nanostructures dont les propriétés sont connues comme alternative à la nanolithographie. Dans cette thèse, des monocouches obtenues par les techniques de Langmuir et de Langmuir-Blodgett (LB) avec le copolymère dibloc polystyrène-poly(4-vinyl pyridine) (PS-PVP), seul ou complexé avec de petites molécules par liaison hydrogène [en particulier, le 3-n-pentadécylphénol (PDP)], ont été étudiées. Une partie importante de notre recherche a été consacrée à l'étude d'une monocouche assemblée atypique baptisée réseau de nanostries. Des monocouches LB composées de nanostries ont déjà été rapportées dans la littérature mais elles coexistent souvent avec d'autres morphologies, ce qui les rend inutilisables pour des applications potentielles. Nous avons déterminé les paramètres moléculaires et les conditions expérimentales qui contrôlent cette morphologie, la rendant très reproductible. Nous avons aussi proposé un mécanisme original pour la formation de cette morphologie. De plus, nous avons montré que l'utilisation de solvants à haut point d’ébullition, non couramment utilisés pour la préparation des films Langmuir, peut améliorer l'ordre des nanostries. En étudiant une large gamme de PS-PVP avec des rapports PS/PVP et des masses molaires différents, avec ou sans la présence de PDP, nous avons établi la dépendance des types principaux de morphologie (planaire, stries, nodules) en fonction de la composition et de la concentration des solutions. Ces observations ont mené à une discussion sur les mécanismes de formation des morphologies, incluant la cinétique, l’assemblage moléculaire et l’effet du démouillage. Nous avons aussi démontré pour la première fois que le plateau dans l'isotherme des PS-PVP/PDP avec morphologie de type nodules est relié à une transition ordre-ordre des nodules (héxagonal-tétragonal) qui se produit simultanément avec la réorientation du PDP, les deux aspects étant clairement observés par AFM. Ces études ouvrent aussi la voie à l'utilisation de films PS-PVP/PDP ultraminces comme masque. La capacité de produire des films nanostructurés bien contrôlés sur différents substrats a été démontrée et la stabilité des films a été vérifiée. Le retrait de la petite molécule des nanostructures a fait apparaître une structure interne à explorer lors d’études futures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durant les dernières décennies, la technique Langmuir-Blodgett (LB) s’est beaucoup développée dans l’approche « bottom-up » pour la création de couches ultra minces nanostructurées. Des patrons constitués de stries parallèles d’environ 100 à 200 nm de largeur ont été générés avec la technique de déposition LB de monocouches mixtes de 1,2-dilauroyl-sn-glycéro-3-phosphatidylcholine (DLPC) et de 1,2-dipalmitoyl-sn-glycéro-3-phosphatidylcholine (DPPC) sur des substrats de silicium et de mica. Afin d’amplifier la fonctionnalité de ces patrons, la 1-palmitoyl-2-(16-(S-methyldithio)hexadécanoyl)-sn-glycéro-3-phosphatidylcholine (DSDPPC) et la 1-lauroyl-2-(12-(S-methyldithio)dodédecanoyl)-sn-glycéro-3-phosphatidylcholine (DSDLPC) ont été employées pour la préparation de monocouches chimiquement hétérogènes. Ces analogues de phospholipide possèdent un groupement fonctionnel méthyldisulfide qui est attaché à la fin de l’une des chaînes alkyles. Une étude exhaustive sur la structure de la phase des monocouches Langmuir, Langmuir-Schaefer (LS) et LB de la DSDPPC et de la DSDLPC et leurs différents mélanges avec la DPPC ou la DLPC est présentée dans cette thèse. Tout d’abord, un contrôle limité de la périodicité et de la taille des motifs des stries parallèles de DPPC/DLPC a été obtenu en variant la composition lipidique, la pression de surface et la vitesse de déposition. Dans un mélange binaire de fraction molaire plus grande de lipide condensé que de lipide étendu, une vitesse de déposition plus lente et une plus basse pression de surface ont généré des stries plus continues et larges. L’addition d’un tensioactif, le cholestérol, au mélange binaire équimolaire de la DPPC/DLPC a permis la formation de stries parallèles à de plus hautes pressions de surface. La caractérisation des propriétés physiques des analogues de phospholipides a été nécessaire. La température de transition de phase de la DSDPPC de 44.5 ± 1.5 °C comparativement à 41.5 ± 0.3 °C pour la DPPC. L’isotherme de la DSDPPC est semblable à celui de la DPPC. La monocouche subit une transition de phase liquide-étendue-à-condensée (LE-C) à une pression de surface légèrement supérieure à celle de la DPPC (6 mN m-1 vs. 4 mN m-1) Tout comme la DLPC, la DSDLPC demeure dans la phase LE jusqu’à la rupture de la monocouche. Ces analogues de phospholipide existent dans un état plus étendu tout au long de la compression de la monocouche et montrent des pressions de surface de rupture plus basses que les phospholipides non-modifiés. La morphologie des domaines de monocouches Langmuir de la DPPC et de la DSDPPC à l’interface eau/air a été comparée par la microscopie à angle de Brewster (BAM). La DPPC forme une monocouche homogène à une pression de surface (π) > 10 mN/m, alors que des domaines en forme de fleurs sont formés dans la monocouche de DSDPPC jusqu’à une π ~ 30 mN m-1. La caractérisation de monocouches sur substrat solide a permis de démontrer que le patron de stries parallèles préalablement obtenu avec la DPPC/DLPC était reproduit en utilisant des mélanges de la DSDPPC/DLPC ou de la DPPC/DSDLPC donnant ainsi lieu à des patrons chimiquement hétérogènes. En général, pour obtenir le même état de phase que la DPPC, la monocouche de DSDPPC doit être comprimée à de plus hautes pressions de surface. Le groupement disulfide de ces analogues de phospholipide a été exploité, afin de (i) former des monocouches auto-assemblées sur l’or et de (ii) démontrer la métallisation sélective des terminaisons fonctionnalisées des stries. La spectrométrie de photoélectrons induits par rayons X (XPS) a confirmé que la monocouche modifiée réagit avec la vapeur d’or pour former des thiolates d’or. L’adsorption de l’Au, de l’Ag et du Cu thermiquement évaporé démontre une adsorption préférentielle de la vapeur de métal sur la phase fonctionnalisée de disulfide seulement à des recouvrements sub-monocouche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse porte sur le calcul de structures électroniques dans les solides. À l'aide de la théorie de la fonctionnelle de densité, puis de la théorie des perturbations à N-corps, on cherche à calculer la structure de bandes des matériaux de façon aussi précise et efficace que possible. Dans un premier temps, les développements théoriques ayant mené à la théorie de la fonctionnelle de densité (DFT), puis aux équations de Hedin sont présentés. On montre que l'approximation GW constitue une méthode pratique pour calculer la self-énergie, dont les résultats améliorent l'accord de la structure de bandes avec l'expérience par rapport aux calculs DFT. On analyse ensuite la performance des calculs GW dans différents oxydes transparents, soit le ZnO, le SnO2 et le SiO2. Une attention particulière est portée aux modèles de pôle de plasmon, qui permettent d'accélérer grandement les calculs GW en modélisant la matrice diélectrique inverse. Parmi les différents modèles de pôle de plasmon existants, celui de Godby et Needs s'avère être celui qui reproduit le plus fidèlement le calcul complet de la matrice diélectrique inverse dans les matériaux étudiés. La seconde partie de la thèse se concentre sur l'interaction entre les vibrations des atomes du réseau cristallin et les états électroniques. Il est d'abord montré comment le couplage électron-phonon affecte la structure de bandes à température finie et à température nulle, ce qu'on nomme la renormalisation du point zéro (ZPR). On applique ensuite la méthode GW au calcul du couplage électron-phonon dans le diamant. Le ZPR s'avère être fortement amplifié par rapport aux calculs DFT lorsque les corrections GW sont appliquées, améliorant l'accord avec les observations expérimentales.