12 resultados para mitotic chromosomes
em Université de Montréal, Canada
Resumo:
ADN subit une série de transformations structurelles complexes au cours de la division cellulaire, ce qui entraîne dans son compactage chromosomes mitotiques par un processus appelé la condensation des chromosomes. Le complexe de condensine pentamérique est fortement impliqué comme un effecteur majeur de ce phénomène. Il s'agit d'un complexe protéine de sous-unités multiples avec deux sous-unités catalytiques [SMC- Structural Maintenance of Chromosomes] et de trois sous-unités de régulation, hautement conservés de la levure à l'homme. Le complexe de condensine dans Saccharomyces cerevisiae est constitué de deux sous-unités de SMC [Smc2 et Smc4] et trois protéines non réglementaires [Brn1, Ycs4, Ycg1]. Malgré son importance, le mécanisme d'action de condensine reste largement inconnu. Par conséquent, l'objectif de cette recherche est de comprendre le mécanisme d'action de condensine et comment elle est affectée par l'interaction entre ses sous-unités réglementaires et non-réglementaires. Cette thèse identifie quatre morphologies dépendants du cycle cellulaire distincts du locus d'ADNr. Cette transformation du phénotype ADNr de G1 à la mitose dépend condensine. Afin de déterminer le rôle de l'interaction entre les sous-unités catalytiques et réglementaires de condensine dans la régulation du complexe condensine, nous avons identifié six résidus positifs sur l'extrémité C-terminale de BRN1 qui affectent la formation du complexe condensine, l'activité de la condensation et l'interaction avec tubuline, ce qui suggère que ces résidus ont un rôle dans la régulation de condensine. Ensemble, nos résultats suggèrent un modèle de règlement du condensine par l'interaction entre les sous-unités de condensine.
Resumo:
La division cellulaire est un processus fondamental des êtres vivants. À chaque division cellulaire, le matériel génétique d'une cellule mère est dupliqué et ségrégé pour produire deux cellules filles identiques; un processus nommé la mitose. Tout d'abord, la cellule doit condenser le matériel génétique pour être en mesure de séparer mécaniquement et également le matériel génétique. Une erreur dans le niveau de compaction ou dans la dynamique de la mitose occasionne une transmission inégale du matériel génétique. Il est suggéré dans la littérature que ces phénomènes pourraient causé la transformation des cellules cancéreuses. Par contre, le mécanisme moléculaire générant la coordination des changements de haut niveau de la condensation des chromosomes est encore incompris. Dans les dernières décennies, plusieurs approches expérimentales ont identifié quelques protéines conservées dans ce processus. Pour déterminer le rôle de ces facteurs dans la compaction des chromosomes, j'ai effectué un criblage par ARNi couplé à de l'imagerie à haute-résolution en temps réel chez l'embryon de C. elegans. Grâce à cette technique, j'ai découvert sept nouvelles protéines requises pour l'assemblage des chromosomes mitotiques, incluant la Ribonucléotide réductase (RNR) et Topoisomérase II (topo-II). Dans cette thèse, je décrirai le rôle structural de topo-II dans l'assemblage des chromosomes mitotiques et ces mécanismes moléculaires. Lors de la condensation des chromosomes, topo-II agit indépendamment comme un facteur d'assemblage local menant par la suite à la formation d'un axe de condensation tout au long du chromosome. Cette localisation est à l'opposé de la position des autres facteurs connus qui sont impliqués dans la condensation des chromosomes. Ceci représente un nouveau mécanisme pour l'assemblage des chromosomes chez C. elegans. De plus, j'ai découvert un rôle non-enzymatique à la protéine RNR lors de l'assemblage des chromosomes. Lors de ce processus, RNR est impliqué dans la stabilité des nucléosomes et alors, permet la compaction de haut niveau de la chromatine. Dans cette thèse, je rapporte également des résultats préliminaires concernant d'autres nouveaux facteurs découverts lors du criblage ARNi. Le plus important est que mon analyse révèle que la déplétion des nouvelles protéines montre des phénotypes distincts, indiquant la fonction de celles-ci lors de l'assemblage des chromosomes. Somme toute, je conclus que les chromosomes en métaphase sont assemblés par trois protéines ayant des activités différentes d'échafaudage: topoisomérase II, les complexes condensines et les protéines centromériques. En conclusion, ces études prouvent le mécanisme moléculaire de certaines protéines qui contribuent à la formation des chromosomes mitotiques.
Resumo:
Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus. Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces.
Resumo:
Les topoisomérases I (topA) et III (topB) sont les deux topoisomérases (topos) de type IA d’Escherichia coli. La fonction principale de la topo I est la relaxation de l’excès de surenroulement négatif, tandis que peu d’information est disponible sur le rôle de la topo III. Les cellules pour lesquelles les deux topoisomérases de type IA sont manquantes souffrent d’une croissance difficile ainsi que de défauts de ségrégation sévères. Nous démontrons que ces problèmes sont majoritairement attribuables à des mutations dans la gyrase qui empêchent l’accumulation d’excès de surenroulement négatif chez les mutants sans topA. L’augmentation de l’activité de la gyrase réalisée par le remplacement de l’allèle gyrB(Ts) par le gène de type sauvage ou par l’exposition des souches gyrB(Ts) à une température permissive, permet la correction significative de la croissance et de la ségrégation des cellules topos de type IA. Nous démontrons également que les mutants topB sont hypersensibles à l’inhibition de la gyrase par la novobiocine. La réplication non-régulée en l’absence de topA et de rnhA (RNase HI) augmente la nécessité de l’activité de la topoisomérase III. De plus, en l’absence de topA et de rnhA, la surproduction de la topoisomérase III permet de réduire la dégradation importante d’ADN qui est observée en l’absence de recA (RecA). Nous proposons un rôle pour la topoisomérase III dans la ségrégation des chromosomes lorsque l’activité de la gyrase n’est pas optimale, par la réduction des collisions fourches de réplication s’observant particulièrement en l’absence de la topo I et de la RNase HI.
Resumo:
Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala et Thr115Ala. L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide (VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent également que les dommages à l'ADN influencent la composition des corps nucléolaires, structure nucléaire qui émerge maintenant comme une composante importante de la réponse aux dommages à l'ADN. Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une fonction de Bcl-xL durant la mitose et dans la stabilité génomique. Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la progression de la mitose jusqu'à la division cellulaire.
Rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l'ADN
Resumo:
Les centrosomes sont les centres organisateurs des microtubules et jouent un rôle crucial dans l’organisation du fuseau bipolaire pendant la mitose. Plus récemment, le rôle des centrosomes dans la régulation de l’entrée en mitose a été mis en évidence. Les centrosomes semblent également contribuer à l’activation du point de contrôle en G2/M en réponse aux lésions de l’ADN en servant de point de rencontre pour les régulateurs du cycle cellulaire et les gènes de réponse aux dommages à l’ADN. L’amplification du nombre de centrosomes est une caractéristique des cellules tumorales mais de façon intéressante, elle constitue aussi une réponse des cellules aux dommages à l’ADN. Les mécanismes qui régulent l’homéostasie et la dynamique des centrosomes sont encore mal compris. Pour mieux comprendre le rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l’ADN, le recrutement et/ou l’activation au niveau des centrosomes des kinases impliquées dans les voies de signalisation de ce point de contrôle ont été étudiés par immunofluorescence indirecte sur cellules HeLaS3 ou par Western blot sur des fractions enrichies en centrosomes. Nos résultats montrent que les kinases ATM, ATR, CHK1 et CHK2 sont actives dans les centrosomes de cellules en phase G2. En réponse à l’activation du point de contrôle en G2/M, les formes actives de ces kinases diminuent au niveau des centrosomes. Pour identifier de nouveaux acteurs centrosomaux potentiellement impliqués dans la régulation de ce point de contrôle, une analyse comparative des protéomes de centrosomes purifiés a également été réalisée par spectrométrie de masse. Pour étudier plus particulièrement la fonction de CHK2 au niveau des centrosomes, nous avons développer des outils moléculaires qui serviront à déterminer le rôle de la sous population de CHK2 localisée aux centrosomes 1) dans la régulation de l’entrée en mitose au cours d’un cycle normal 2) dans l’activation et la stabilité du point de contrôle en G2/M en réponse aux lésions l’ADN et 3) dans l’homéostasie et la dynamiques des centrosomes en réponse aux dommages à l’ADN. Cette étude permettra de mieux comprendre la fonction des centrosomes dans la réponse cellulaire au stress génotoxiques anti-cancereux et de révéler de nouvelles fonctions potentielles pour la kinase CHK2.
Rôles et régulation du PI(4,5)P2 dans le remodelage cortical et la morphogénèse cellulaire en mitose
Resumo:
Doctorat réalisé en cotutelle avec le laboratoire de François Payre au Centre de Biologie du Développement à Toulouse, France (Université de Toulouse III - Paul Sabatier)
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Les dinoflagellés sont des eucaryotes unicellulaires qui composent une grande partie du phytoplancton et qui jouent un rôle important au niveau de la photosynthèse, de la production primaire et de la conservation des écosystèmes marins. Les dinoflagellés se distinguent des autres eucaryotes par leur biologie et leur organisation nucléaire unique. Lors de la mitose, leur membrane nucléaire demeure intacte et la ségrégation des chromosomes se fait à partir de fuseaux mitotiques formés dans le cytoplasme et qui traversent le noyau au travers de canaux spécialisés Aussi, leurs chromosomes sont condensés en permanence et le processus utilisé pour y arriver est encore très mal compris puisque les dinoflagellés ne possèdent aucunes histones détectables. Lingulodinium polyedrum est un dinoflagellé photosynthétique marin utilisé comme organisme modèle en ce qui concerne l’étude des rythmes circadiens (bioluminescence, migration verticale, mitose et photosynthèse). La découverte et l’étude des éléments régulateurs du cycle cellulaire peuvent nous amener à comprendre le mécanisme, l’influence et la portée du contrôle circadien sur le cycle cellulaire. De plus, l’étude du cycle cellulaire pourrait permettre de révéler des indices quant aux caractéristiques singulières des dinoflagellés qui sont pour le moment énigmatiques. Par le passé, une étude chez Lingulodinium polyedrum a permis d’identifier la cycline impliquée dans la mitose, LpCyc1, le premier régulateur du cycle cellulaire a être découvert chez les dinoflagellés. La présente étude s’attarde sur la caractérisation de la LpCyc1, soit son expression, sa localisation, sa phosphorylation. Ces trois éléments concordent de façon à synchroniser l’activité de la LpCyc1 (et ainsi la mitose) de façon circadienne. Cette étude présente aussi la création et le développement d’un outil majeur pour l’étude future de Lingulodinium polyedrum, le transcriptome des ARNm à partir d’un iv séquençage Illumina. C’est d’ailleurs avec cet outil que nous avons découvert la CDK responsable du contrôle de la phase M, LpCdk1. Cette CDK possède tous les domaines d’une CDK classique, un site de liaison des substrats, un site de liaison à l’ATP, une boucle activatrice, et une interface de liaison avec la cycline. Le transcriptome de Lingulodinium polyedrum a aussi permis de recenser toutes les protéines conservées normalement retrouvées dans le contrôle du cycle cellulaire, qui nous a permis de faire une ébauche préliminaire du cycle cellulaire de L. polyedrum. Cette analyse est une première chez Lingulodinium polyedrum et peut s’étendre pour l’étude d’une multitude d’autres processus métaboliques.
Resumo:
Les centrosomes dont le rôle principal est d’organiser le cytosquelette de microtubules et le fuseau mitotique servent aussi de sites d’interaction pour plusieurs protéines régulatrices du cycle cellulaire et de la réponse aux dommages à l’ADN. Une de ces protéines est la kinase CHK2 et plusieurs publications montrent une sous-population de CHK2 localisée aux centrosomes dans les cellules en interphase et en mitose. Toutefois, la localisation de CHK2 aux centrosomes demeure controversée, car des doutes subsistent en ce qui concerne la spécificité des anticorps utilisés en immunocytochimie. En utilisant des lignées cellulaires du cancer du côlon, les cellules HCT116 sauvages et HCT116 CHK2-/- ainsi que différentes lignées d’ostéosarcome humain dans lesquelles l’expression de CHK2 a été inhibée par ARN interférence, nous montrons que les anticorps anti-CHK2 qui donnent un signal centrosomal sont non spécifiques et reconnaissent un antigène inconnu sur les centrosomes. Cependant, par des expériences d’immunofluorescence réalisées avec des cellules U2OS qui expriment les protéines de fusion GFP-CHK2 ou FLAG-CHK2, nous révélons une localisation centrosomale de CHK2 dans les cellules en mitose, mais pas en interphase. Ce résultat a été confirmé par vidéomicroscopie dans les cellules vivantes exprimant GFP-CHK2. Pour déterminer le ou les rôles potentiels de CHK2 en mitose nous avons réalisé des expériences pour explorer le rôle de CHK2 dans la progression de la mitose, la nucléation des microtubules aux centrosomes et la progression de la mitose en présence de problèmes d’attachement des chromosomes où de lésions génotoxiques. Nos données suggèrent que CHK2 n’est pas impliquée dans la régulation de la mitose dans les cellules U2OS.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en boucle non-structurée entre les hélices α1 and α2 de la protéine. Ce domaine protéique n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine orthologue chez Caenorhabditis elegans. A l'intérieur de ce domaine, Bcl-xL subit une phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts mitotiques liés à l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules diploïdes humaines normales, et in vivo chez Caenorhabditis elegans. Dans une première étude, nous avons utilisé la lignée cellulaire de cellules fibroblastiques diploïdes humaines normales BJ, exprimant Bcl-xL (type sauvage), (S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les cellules exprimant les mutants de phosphorylation ont montré des cinétiques de doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement de la population cellulaire corrèle avec l'apparition de la sénescence cellulaire, sans impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes typiques de sénescence associés notamment à haut niveau de l'activité β-galactosidase associée à la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de p21WAF1/ Cip1, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la formation de foyers de chromatine nucléaire associés à γH2A.X. Les analyses de fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité chromosomique et l'aneuploïdie. Ces résultats suggèrent que les cycles de phosphorylation et déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont importants dans le maintien de l'intégrité des chromosomes lors de la mitose dans les cellules normales. Dans une deuxième étude, nous avons entrepris des expériences chez Caenorhabditis elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et S49/62A) ont été générés et leurs effets ont été analysés sur les cellules germinales des jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques et des zones de transition, des anomalies chromosomiques à leur stade de diplotène, et une augmentation de l'apoptose des cellules germinales. Certaines de ces souches transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé l'importance de Ser49 et Ser62 à l'intérieur du domaine à boucle de Bcl-xL pour le maintien de la stabilité chromosomique. Ces études auront une incidence sur les futures stratégies visant à développer et à identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer.