50 resultados para markov chains monte carlo methods
em Université de Montréal, Canada
Resumo:
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.
Resumo:
Les processus Markoviens continus en temps sont largement utilisés pour tenter d’expliquer l’évolution des séquences protéiques et nucléotidiques le long des phylogénies. Des modèles probabilistes reposant sur de telles hypothèses sont conçus pour satisfaire la non-homogénéité spatiale des contraintes fonctionnelles et environnementales agissant sur celles-ci. Récemment, des modèles Markov-modulés ont été introduits pour décrire les changements temporels dans les taux d’évolution site-spécifiques (hétérotachie). Des études ont d’autre part démontré que non seulement la force mais également la nature de la contrainte sélective agissant sur un site peut varier à travers le temps. Ici nous proposons de prendre en charge cette réalité évolutive avec un modèle Markov-modulé pour les protéines sous lequel les sites sont autorisés à modifier leurs préférences en acides aminés au cours du temps. L’estimation a posteriori des différents paramètres modulants du noyau stochastique avec les méthodes de Monte Carlo est un défi de taille que nous avons su relever partiellement grâce à la programmation parallèle. Des réglages computationnels sont par ailleurs envisagés pour accélérer la convergence vers l’optimum global de ce paysage multidimensionnel relativement complexe. Qualitativement, notre modèle semble être capable de saisir des signaux d’hétérogénéité temporelle à partir d’un jeu de données dont l’histoire évolutive est reconnue pour être riche en changements de régimes substitutionnels. Des tests de performance suggèrent de plus qu’il serait mieux ajusté aux données qu’un modèle équivalent homogène en temps. Néanmoins, les histoires substitutionnelles tirées de la distribution postérieure sont bruitées et restent difficilement interprétables du point de vue biologique.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Rapport de recherche
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal
Resumo:
Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Resumo:
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative.