1 resultado para large-small scale (LSS) equations of turbulence

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La variabilité génétique actuelle est influencée par une combinaison complexe de variables historiques et contemporaines. Dès lors, une interprétation juste de l’impact des processus actuels nécessite une compréhension profonde des processus historiques ayant influencé la variabilité génétique. En se basant sur la prémisse que des populations proches devraient partager une histoire commune récente, nombreuses études, effectuées à petite échelle spatiale, ne prennent pas en considération l’effet potentiel des processus historiques. Cette thèse avait pour but de vérifier la validité de cette prémisse en estimant l’effet de la dispersion historique à grande et à petite échelle spatiale. Le premier volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la répartition des organismes à grande échelle spatiale. Pour ce faire, les moules d’eau douce du genre flotteurs (Pyganodon spp.) ont servies de modèle biologique. Les moules d'eau douce se dispersent principalement au stade larvaire en tant que parasites des poissons. Une série de modèles nuls ont été développés pour évaluer la co-occurrence entre des parasites et leurs hôtes potenitels. Les associations distinctes du flotteur de Terre-Neuve (P. fragilis) avec des espèces de poissons euryhalins permettent d’expliquer sa répartition. Ces associations distinctes ont également pu favoriser la différenciation entre le flotteur de Terre-Neuve et son taxon soeur : le flotteur de l’Est (P. cataracta). Cette étude a démontré les effets des associations biologiques historiques sur les répartitions à grande échelle spatiale. Le second volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la variabilité génétique, à petite échelle spatiale. Cette fois, différentes populations de crapet de roche (Ambloplites rupestris) et de crapet soleil (Lepomis gibbosus), dans des drainages adjacents ont servies de modèle biologique. Les différences frappantes observées entre les deux espèces suggèrent des patrons de colonisation opposés. La faible diversité génétique observée en amont des drainages et la forte différenciation observée entre les drainages pour les populations de crapet de roche suggèrent que cette espèce aurait colonisé les drainages à partir d'une source en aval. Au contraire, la faible différenciation et la forte diversité génétique observées en amont des drainages pour les populations de crapet soleil suggèrent une colonisation depuis l’amont, induisant du même coup un faux signal de flux génique entre les drainages. La présente étude a démontré que la dispersion historique peut entraver la capacité d'estimer la connectivité actuelle, à petite échelle spatiale, invalidant ainsi la prémisse testée dans cette thèse. Les impacts des processus historiques sur la variabilité génétique ne sont pas faciles à démontrer. Le troisième volet de cette thèse avait pour but de développer une méthode permettant de les détecter. La méthode proposée est très souple et favorise la comparaison entre la variabilité génétique et plusieurs hypothèses de dispersion. La méthode pourrait donc être utilisée pour comparer des hypothèses de dispersion basées sur le paysage historique et sur le paysage actuel et ainsi permettre l’évaluation des impacts historiques et contemporains sur la variabilité génétique. Les performances de la méthode sont présentées pour plusieurs scénarios de simulations, d’une complexité croissante. Malgré un impact de la différentiation globale, du nombre d’individus ou du nombre de loci échantillonné, la méthode apparaît hautement efficace. Afin d’illustrer le potentiel de la méthode, deux jeux de données empiriques très contrastés, publiés précédemment, ont été ré analysés. Cette thèse a démontré les impacts de la dispersion historique sur la variabilité génétique à différentes échelles spatiales. Les effets historiques potentiels doivent être pris en considération avant d’évaluer les impacts des processus écologiques sur la variabilité génétique. Bref, il faut intégrer l’évolution à l’écologie.