2 resultados para lapse and extension of caveats
em Université de Montréal, Canada
Resumo:
La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop sont des normes industrielle de facto. D'autre part, la méthode de subdivision 4-8 est bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet d'être plus pratique pour atteindre un niveau donné de précision. Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des surfaces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent, de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8. En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches, un peu comme les bornes correspondantes données par Wu-Peters pour la méthode de subdivision Loop.
Resumo:
En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux transluminescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image. Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la lumière incidente et sortante. Une composante importante de ces modèles est leur application à évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet. Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la transluminescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration. Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion, octroyant une amélioration possible à leur efficacité et précision.