2 resultados para land use capacity classes
em Université de Montréal, Canada
Resumo:
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.
Resumo:
De nos jours les cartes d’utilisation/occupation du sol (USOS) à une échelle régionale sont habituellement générées à partir d’images satellitales de résolution modérée (entre 10 m et 30 m). Le National Land Cover Database aux États-Unis et le programme CORINE (Coordination of information on the environment) Land Cover en Europe, tous deux fondés sur les images LANDSAT, en sont des exemples représentatifs. Cependant ces cartes deviennent rapidement obsolètes, spécialement en environnement dynamique comme les megacités et les territoires métropolitains. Pour nombre d’applications, une mise à jour de ces cartes sur une base annuelle est requise. Depuis 2007, le USGS donne accès gratuitement à des images LANDSAT ortho-rectifiées. Des images archivées (depuis 1984) et des images acquises récemment sont disponibles. Sans aucun doute, une telle disponibilité d’images stimulera la recherche sur des méthodes et techniques rapides et efficaces pour un monitoring continue des changements des USOS à partir d’images à résolution moyenne. Cette recherche visait à évaluer le potentiel de telles images satellitales de résolution moyenne pour obtenir de l’information sur les changements des USOS à une échelle régionale dans le cas de la Communauté Métropolitaine de Montréal (CMM), une métropole nord-américaine typique. Les études précédentes ont démontré que les résultats de détection automatique des changements dépendent de plusieurs facteurs tels : 1) les caractéristiques des images (résolution spatiale, bandes spectrales, etc.); 2) la méthode même utilisée pour la détection automatique des changements; et 3) la complexité du milieu étudié. Dans le cas du milieu étudié, à l’exception du centre-ville et des artères commerciales, les utilisations du sol (industriel, commercial, résidentiel, etc.) sont bien délimitées. Ainsi cette étude s’est concentrée aux autres facteurs pouvant affecter les résultats, nommément, les caractéristiques des images et les méthodes de détection des changements. Nous avons utilisé des images TM/ETM+ de LANDSAT à 30 m de résolution spatiale et avec six bandes spectrales ainsi que des images VNIR-ASTER à 15 m de résolution spatiale et avec trois bandes spectrales afin d’évaluer l’impact des caractéristiques des images sur les résultats de détection des changements. En ce qui a trait à la méthode de détection des changements, nous avons décidé de comparer deux types de techniques automatiques : (1) techniques fournissant des informations principalement sur la localisation des changements et (2)techniques fournissant des informations à la fois sur la localisation des changements et sur les types de changement (classes « de-à »). Les principales conclusions de cette recherche sont les suivantes : Les techniques de détection de changement telles les différences d’image ou l’analyse des vecteurs de changements appliqués aux images multi-temporelles LANDSAT fournissent une image exacte des lieux où un changement est survenu d’une façon rapide et efficace. Elles peuvent donc être intégrées dans un système de monitoring continu à des fins d’évaluation rapide du volume des changements. Les cartes des changements peuvent aussi servir de guide pour l’acquisition d’images de haute résolution spatiale si l’identification détaillée du type de changement est nécessaire. Les techniques de détection de changement telles l’analyse en composantes principales et la comparaison post-classification appliquées aux images multi-temporelles LANDSAT fournissent une image relativement exacte de classes “de-à” mais à un niveau thématique très général (par exemple, bâti à espace vert et vice-versa, boisés à sol nu et vice-versa, etc.). Les images ASTER-VNIR avec une meilleure résolution spatiale mais avec moins de bandes spectrales que LANDSAT n’offrent pas un niveau thématique plus détaillé (par exemple, boisés à espace commercial ou industriel). Les résultats indiquent que la recherche future sur la détection des changements en milieu urbain devrait se concentrer aux changements du couvert végétal puisque les images à résolution moyenne sont très sensibles aux changements de ce type de couvert. Les cartes indiquant la localisation et le type des changements du couvert végétal sont en soi très utiles pour des applications comme le monitoring environnemental ou l’hydrologie urbaine. Elles peuvent aussi servir comme des indicateurs des changements de l’utilisation du sol. De techniques telles l’analyse des vecteurs de changement ou les indices de végétation son employées à cette fin.