7 resultados para human urine analysis
em Université de Montréal, Canada
Resumo:
The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate.
Resumo:
Ce travail présente deux nouveaux systèmes simples d'analyse de la marche humaine grâce à une caméra de profondeur (Microsoft Kinect) placée devant un sujet marchant sur un tapis roulant conventionnel, capables de détecter une marche saine et celle déficiente. Le premier système repose sur le fait qu'une marche normale présente typiquement un signal de profondeur lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui permet d'estimer une carte indiquant l'emplacement et l'amplitude de l'énergie de haute fréquence (HFSE). Le second système analyse les parties du corps qui ont un motif de mouvement irrégulier, en termes de périodicité, lors de la marche. Nous supposons que la marche d'un sujet sain présente partout dans le corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. Nous estimons, à partir de la séquence vidéo de chaque sujet, une carte montrant les zones d'irrégularités de la marche (également appelées énergie de bruit apériodique). La carte avec HFSE ou celle visualisant l'énergie de bruit apériodique peut être utilisée comme un bon indicateur d'une éventuelle pathologie, dans un outil de diagnostic précoce, rapide et fiable, ou permettre de fournir des informations sur la présence et l'étendue de la maladie ou des problèmes (orthopédiques, musculaires ou neurologiques) du patient. Même si les cartes obtenues sont informatives et très discriminantes pour une classification visuelle directe, même pour un non-spécialiste, les systèmes proposés permettent de détecter automatiquement les individus en bonne santé et ceux avec des problèmes locomoteurs.
Resumo:
"Mémoire Présenté à la Faculté des Études Supérieures en vue de l'obtention du Grade de Maîtrise En Droit Option Recherche"
Resumo:
La transcription, la maturation d’ARN, et le remodelage de la chromatine sont tous des processus centraux dans l'interprétation de l'information contenue dans l’ADN. Bien que beaucoup de complexes de protéines formant la machinerie cellulaire de transcription aient été étudiés, plusieurs restent encore à identifier et caractériser. En utilisant une approche protéomique, notre laboratoire a purifié plusieurs composantes de la machinerie de transcription de l’ARNPII humaine par double chromatographie d’affinité "TAP". Cette procédure permet l'isolement de complexes protéiques comme ils existent vraisemblablement in vivo dans les cellules mammifères, et l'identification de partenaires d'interactions par spectrométrie de masse. Les interactions protéiques qui sont validées bioinformatiquement, sont choisies et utilisées pour cartographier un réseau connectant plusieurs composantes de la machinerie transcriptionnelle. En appliquant cette procédure, notre laboratoire a identifié, pour la première fois, un groupe de protéines, qui interagit physiquement et fonctionnellement avec l’ARNPII humaine. Les propriétés de ces protéines suggèrent un rôle dans l'assemblage de complexes à plusieurs sous-unités, comme les protéines d'échafaudage et chaperonnes. L'objectif de mon projet était de continuer la caractérisation du réseau de complexes protéiques impliquant les facteurs de transcription. Huit nouveaux partenaires de l’ARNPII (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 et CCT5) ont été purifiés par la méthode TAP, et la spectrométrie de masse a permis d’identifier de nouvelles interactions. Au cours des années, l’analyse par notre laboratoire des mécanismes de la transcription a contribué à apporter de nouvelles connaissances et à mieux comprendre son fonctionnement. Cette connaissance est essentielle au développement de médicaments qui cibleront les mécanismes de la transcription.
Resumo:
Biological monitoring of early genotoxic effects in urothelial cells using the urinary micronucleus (MNu) assay is promising for early detection of cancer, such as bladder carcinoma. But many problems are encountered, the major being the poorly differential staining of cells, particularly in women having an important amount of squamous cells. We have optimized the protocol and obtained a differential staining of the cell types present in urine on 10 subjects. Following Carnoy I fixation and Papanicolaou staining, urothelial cells were blue while most squamous cells were pink. This differential staining allowed for optimization of the MNu assay on a single urine void, for both females and males. Even if our MNu means were comparable to the literature, the great variation in reported MNu results could reside in the ability of scorers to distinguish correctly between urothelial and squamous cells. When monitoring exposed populations, this erroneous distinction could largely influence the results, even more in women’s urine samples. Given a situation where exposure would not increase micronuclei frequency in vaginal squamous cells, their erroneous analysis in the MNu assay could mask an early genotoxic effect. Therefore, as transitional cell carcinoma of the bladder originates from transformed urothelial cells, restricting micronuclei analysis to urothelial cells could yield a more precise estimate of cancer risk in exposed populations. Moreover, it is hoped that the improvements proposed in this paper will allow for an easier implementation of the MNu assay in various set-ups and enhance its specificity, since MNu are considered a suitable biomarker.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.