2 resultados para hadron physics

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vers la fin du 19ème siècle, le moine et réformateur hindou Swami Vivekananda affirma que la science moderne convergeait vers l'Advaita Vedanta, un important courant philosophique et religieux de l'hindouisme. Au cours des décennies suivantes, suite aux apports scientifiques révolutionnaires de la théorie de la relativité d'Einstein et de la physique quantique, un nombre croissant d'auteurs soutenaient que d'importants "parallèles" pouvaient être tracés entre l'Advaita Vedanta et la physique moderne. Encore aujourd'hui, de tels rapprochements sont faits, particulièrement en relation avec la physique quantique. Cette thèse examine de manière critique ces rapprochements à travers l'étude comparative détaillée de deux concepts: le concept d'akasa dans l'Advaita Vedanta et celui de vide en physique quantique. L'énoncé examiné est celui selon lequel ces deux concepts pointeraient vers une même réalité: un substratum omniprésent et subtil duquel émergent et auquel retournent ultimement les divers constituants de l'univers. Sur la base de cette étude comparative, la thèse argumente que des comparaisons de nature conceptuelle favorisent rarement la mise en place d'un véritable dialogue entre l'Advaita Vedanta et la physique moderne. Une autre voie d'approche serait de prendre en considération les limites épistémologiques respectivement rencontrées par ces disciplines dans leur approche du "réel-en-soi" ou de la "réalité ultime." Une attention particulière sera portée sur l'épistémologie et le problème de la nature de la réalité dans l'Advaita Vedanta, ainsi que sur le réalisme scientifique et les implications philosophiques de la non-séparabilité en physique quantique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medipix2 (MPX) sont des détecteurs semi-conducteurs au silicium montés sur 256x256 pixels. Chaque pixel a une aire de 55x55μm2. L’aire active d’un détecteur MPX est d’environ 2 cm2. Avec deux modes de détection, un seuil et un temps d’exposition ajustables, leur utilisation peut être optimisée pour une analyse spécifique. Seize de ces détecteurs sont présentement installés dans l’expérience ATLAS (A Toroidal LHC ApparatuS) au CERN (Organisation Européenne pour la Recherche Nucléaire). Ils mesurent en temps réel le champ de radiation dû aux collisions proton-proton, au point d’interaction IP1 (Point d’Interaction 1) du LHC (Grand Collisionneur d’Hadrons). Ces mesures ont divers buts comme par exemple la mesure du champ de neutrons dans la caverne d’ATLAS. Le réseau de détecteurs MPX est complètement indépendant du détecteur ATLAS. Le groupe ATLAS-Montréal s’est intéressé à l’analyse des données récoltées par ces détecteurs pour calculer une valeur de la luminosité du LHC au point de collision des faisceaux, autour duquel est construit le détecteur ATLAS. Cette valeur est déterminée indépendamment de la luminosité mesurée par les divers sous-détecteurs d’ATLAS dédiés spécifiquement à la mesure de la luminosité. Avec l’augmentation de la luminosité du LHC les détecteurs MPX les plus proches du point d’interaction détectent un grand nombre de particules dont les traces sont impossibles à distinguer sur les images ("frames") obtenues, à cause de leur recouvrement. Les paramètres de mesure de certains de ces détecteurs ont été optimisés pour des mesures de luminosité. Une méthode d’analyse des données permet de filtrer les pixels bruyants et de convertir les données des images, qui correspondent à des temps d’exposition propres aux détecteurs MPX, en valeur de luminosité pour chaque LumiBlock. Un LumiBlock est un intervalle de temps de mesure propre au détecteur ATLAS. On a validé les mesures de luminosité premièrement en comparant les résultats obtenus par différents détecteurs MPX, et ensuite en comparant les valeurs de luminosité relevées à celles obtenues par les sous-détecteurs d’ATLAS dédiés spécifiquement à la mesure de la luminosité.