27 resultados para gephyrin, synapse

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi impliqué dans le développement des synapses excitatrices, nommées aussi les épines dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un contexte de convulsions précoces. Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci suggère que ces pathologies néonatales peuvent altérer le développement des circuits neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur la survenue des convulsions et dans la formation des épines dendritiques. Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs. Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon spécifique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quelque 30 % de la population neuronale du cortex mammalien est composée d’une population très hétérogène d’interneurones GABAergiques. Ces interneurones diffèrent quant à leur morphologie, leur expression génique, leurs propriétés électrophysiologiques et leurs cibles subcellulaires, formant une riche diversité. Après leur naissance dans les éminences ganglioniques, ces cellules migrent vers les différentes couches corticales. Les interneurones GABAergiques corticaux exprimant la parvalbumin (PV), lesquels constituent le sous-type majeur des interneurones GABAergiques, ciblent spécifiquement le soma et les dendrites proximales des neurones principaux et des neurones PV+. Ces interneurones sont nommés cellules à panier (Basket Cells –BCs) en raison de la complexité morphologique de leur axone. La maturation de la connectivité distincte des BCs PV+, caractérisée par une augmentation de la complexité de l’axone et de la densité synaptique, se déroule graduellement chez la souris juvénile. Des travaux précédents ont commencé à élucider les mécanismes contrôlant ce processus de maturation, identifiant des facteurs génétiques, l’activité neuronale ainsi que l’expérience sensorielle. Cette augmentation marquante de la complexité axonale et de la synaptogénèse durant cette phase de maturation suggère la nécessité d’une synthèse de protéines élevée. La voie de signalisation de la cible mécanistique de la rapamycine (Mechanistic Target Of Rapamycin -mTOR) a été impliquée dans le contrôle de plusieurs aspects neurodéveloppementaux en régulant la synthèse de protéines. Des mutations des régulateurs Tsc1 et Tsc2 du complexe mTOR1 causent la sclérose tubéreuse (TSC) chez l’humain. La majorité des patients TSC développent des problèmes neurologiques incluant des crises épileptiques, des retards mentaux et l’autisme. D’études récentes ont investigué le rôle de la dérégulation de la voie de signalisation de mTOR dans les neurones corticaux excitateurs. Toutefois, son rôle dans le développement des interneurones GABAergiques corticaux et la contribution spécifique de ces interneurones GABAergiques altérés dans les manifestations de la maladie demeurent largement inconnus. Ici, nous avons investigué si et comment l’ablation du gène Tsc1 perturbe le développement de la connectivité GABAergique, autant in vitro que in vivo. Pour investiguer le rôle de l’activation de mTORC1 dans le développement d’une BC unique, nous avons délété le gène Tsc1 en transfectant CRE-GFP dirigé par un promoteur spécifique aux BCs dans des cultures organotypiques provenant de souris Tsc1lox. Le knockdown in vitro de Tsc1 a causé une augmentation précoce de la densité des boutons et des embranchements terminaux formés par les BCs mutantes, augmentation renversée par le traitement à la rapamycine. Ces données suggèrent que l’hyperactivation de la voie de signalisation de mTOR affecte le rythme de la maturation des synapses des BCs. Pour investiguer le rôle de mTORC1 dans les interneurones GABAergiques in vivo, nous avons croisé les souris Tsc1lox avec les souris Nkx2.1-Cre et PV-Cre. À P18, les souris Tg(Nkx2.1-Cre);Tsc1flox/flox ont montré une hyperactivation de mTORC1 et une hypertrophie somatique des BCs de même qu’une augmentation de l’expression de PV dans la région périsomatique des neurones pyramidaux. Au contraire, à P45 nous avons découvert une réduction de la densité des punctas périsomatiques PV-gephyrin (un marqueur post-synaptique GABAergique). L’étude de la morphologie des BCs en cultures organotypiques provenant du knock-out conditionnel Nkx2.1-Cre a confirmé l’augmentation initiale du rythme de maturation, lequel s’effondre ensuite aux étapes développementales tardives. De plus, les souris Tg(Nkx2.1Cre);Tsc1flox/flox montrent des déficits dans la mémoire de travail et le comportement social et ce d’une façon dose-dépendante. En somme, ces résultats suggèrent que l’activation contrôlée de mTOR régule le déroulement de la maturation et la maintenance des synapses des BCs. Des dysfonctions de la neurotransmission GABAergique ont été impliquées dans des maladies telles que l’épilepsie et chez certains patients, elles sont associées avec des mutations du récepteur GABAA. De quelle façon ces mutations affectent le processus de maturation des BCs demeuret toutefois inconnu. Pour adresser cette question, nous avons utilisé la stratégie Cre-lox pour déléter le gène GABRA1, codant pour la sous-unité alpha-1 du récepteur GABAA dans une unique BC en culture organotypique. La perte de GABRA1 réduit l’étendue du champ d’innervation des BCs, suggérant que des variations dans les entrées inhibitrices en raison de l’absence de la sous-unité GABAAR α1 peuvent affecter le développement des BCs. La surexpression des sous-unités GABAAR α1 contenant des mutations identifiées chez des patients épileptiques ont montré des effets similaires en termes d’étendue du champ d’innervation des BCs. Pour approfondir, nous avons investigué les effets de ces mutations identifiées chez l’humain dans le développement des épines des neurones pyramidaux, lesquelles sont l’endroit privilégié pour la formation des synapses excitatrices. Somme toute, ces données montrent pour la première fois que différentes mutations de GABRA1 associées à des syndromes épileptiques peuvent affecter les épines dendritiques et la formation des boutons GABAergiques d’une façon mutation-spécifique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La plasticité synaptique est une importante propriété du système nerveux, impliquée dans l’intégration de l’information. Cette plasticité a généralement été décrite par des changements aux niveaux pré et postsynaptiques. Notamment, l’efficacité présynaptique, soit la probabilité de libération de neurotransmetteurs associée au contenu quantique d’une synapse, peut être augmentée ou diminuée selon l’activité antérieure de la synapse. Malgré cette caractérisation, les mécanismes à l’origine de la détermination de l’efficacité présynaptique demeurent obscurs. Également, la plasticité synaptique reste encore mal définie au niveau glial, limitant, de ce fait, notre compréhension de l’intégration de l’information. Pourtant, la dernière décennie a mené à une redéfinition du rôle des cellules gliales. Autrefois reléguées à un rôle de support passif aux neurones, elles sont désormais reconnues comme étant impliquées dans la régulation de la neurotransmission. Notamment, à la jonction neuromusculaire (JNM), les cellules de Schwann périsynaptiques (CSPs) sont reconnues pour moduler l’efficacité présynaptique et les phénomènes de plasticité. Un tel rôle actif dans la modulation de la neurotransmission implique cependant que les CSPs soient en mesure de s’adapter aux besoins changeants des JNMs auxquelles elles sont associées. La plasticité synaptique devrait donc sous-tendre une forme de plasticité gliale. Nous savons, en effet, que la JNM est capable de modifications tant morphologiques que physiologiques en réponse à des altérations de l'activité synaptique. Par exemple, la stimulation chronique des terminaisons nerveuses entraîne une diminution persistante de l’efficacité présynaptique et une augmentation de la résistance à la dépression. À l’opposé, le blocage chronique des récepteurs nicotiniques entraîne une augmentation prolongée de l’efficacité présynaptique. Aussi, compte tenu que les CSPs détectent et répondent à la neurotransmission et qu’elles réagissent à certains stimuli environnementaux par des changements morphologiques, physiologiques et d’expression génique, nous proposons que le changement d'efficacité présynaptique imposé à la synapse, soit par une stimulation nerveuse chronique ou par blocage chronique des récepteurs nicotiniques, résulte en une adaptation des propriétés des CSPs. Cette thèse propose donc d’étudier, en parallèle, la plasticité présynaptique et gliale à long-terme, en réponse à un changement chronique de l’activité synaptique, à la JNM d’amphibien. Nos résultats démontrent les adaptations présynaptiques de l’efficacité présynaptique, des phénomènes de plasticité à court-terme, du contenu mitochondrial et de la signalisation calcique. De même, ils révèlent différentes adaptations gliales, notamment au niveau de la sensibilité des CSPs aux neurotransmetteurs et des propriétés de leur réponse calcique. Les adaptations présynaptiques et gliales sont discutées, en parallèle, en termes de mécanismes et de fonctions possibles dans la régulation de la neurotransmission. Nos travaux confirment donc la coïncidence de la plasticité présynaptique et gliale et, en ce sens, soulèvent l’importance des adaptations gliales pour le maintien de la fonction synaptique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nous avons étudié les relations anatomiques entre les systèmes de neurotransmission à substance P (SP) et à sérotonine (5-hydroxytryptamine, 5-HT) dans le noyau du raphé dorsal (NRD) du rongeur, afin de mieux comprendre les interactions entre ces systèmes durant la régulation de l’humeur. Le NRD reçoit une innervation SP provenant de l’habenula, et le blocage pharmacologique des récepteurs neurokinine-1 (rNK1) de la SP aurait des effets antidépresseurs. Chez le rongeur, le traitement par les antagonistes des rNK1 s’accompagne d’une désensibilisation des autorécepteurs 5-HT1A de la 5-HT et d’une hausse de l’activité des neurones 5-HT dans le NRD, suggérant des interactions locales entre ces deux systèmes. Dans un premier temps, nous avons démontré par doubles marquages immunocytochimiques en microscopies optique, confocale et électronique, la présence du rNK1 dans une sous-population de neurones 5-HT du NRD caudal. Lors de l’analyse en microscopie électronique, nous avons pu constater que les rNK1 étaient principalement cytoplasmiques dans les neurones 5-HT et membranaires sur les neurones non 5-HT du noyau. Grâce à d’autres doubles marquages, nous avons aussi pu identifier les neurones non-5-HT porteurs de rNK1 comme étant GABAergiques. Nous avons ensuite combiné l’immunomarquage de la SP avec celui du rNK1, dans le but d’examiner les relations entre les terminaisons (varicosités *) axonales SP et les neurones 5-HT (pourvus de rNK1 cytoplasmiques du NRD caudal. En simple marquage de la SP, nous avons pu estimer à 41% la fréquence avec laquelle les terminaisons SP font synapse. Dans le matériel doublement marqué pour la SP et son récepteur, les terminaisons SP ont été fréquemment retrouvées en contact direct ou à proximité des dendrites munies de rNK1 cytoplasmiques, mais toujours éloignées des dendrites à rNK1 membranaires. Pour tester l’hypothèse d’une internalisation soutenue des rNK1 par la SP dans les neurones 5-HT, nous avons ensuite examiné la localisation subcellulaire du récepteur chez le rat traité avec un antagoniste du rNK1, le RP67580. La densité du marquage des rNK1 a été mesurée dans le cytoplasme et sur la membrane des deux types de dendrites (5-HT: rNK1 cytoplasmiques; non 5-HT: rNK1 membranaires). Une heure après une injection unique de l’antagoniste, la distribution du rNK1 est apparue inchangée dans les deux types de neurones (5-HT et non 5-HT). Par contre, après un traitement quotidien de 7 ou 21 jours avec l’antagoniste, nous avons mesuré une augmentation significative des densités cytoplasmique et membranaire du rNK1 dans les neurones 5-HT, sans aucun changement dans les neurones non 5-HT. Ces traitements ont aussi augmenté l’expression du gène rNK1 dans le NRD. Enfin, nous avons mesuré une hausse de la densité membranaire du rNK1 dans les neurones 5-HT, sans hausse de densité cytoplasmique, par suite d’une lésion bilatérale de l’habenula. Ces résultats confortent l’hypothèse d’une activation et d’une internalisation soutenues des rNK1 par la SP dans les neurones 5-HT du NRD caudal. Ils suggèrent aussi que le trafic des rNK1 dans les neurones 5-HT du NRD représente un mécanisme cellulaire en contrôle de l’activation du système 5-HT par les afférences SP en provenance de l’habenula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les interneurones GABAergiques constituent une population mineure de cellules par rapport aux neurones glutamatergiques dans le néocortex. Cependant ils contrôlent fortement l'excitabilité neuronale, la dynamique des réseaux neuronaux et la plasticité synaptique. L'importance des circuits GABAergiques dans le processus fonctionnel et la plasticité des réseaux corticaux est soulignée par des résultats récents qui montrent que des modifications très précises et fiables des circuits GABAergiques sont associées à divers troubles du développement neurologique et à des défauts dans les fonctions cérébrales. De ce fait, la compréhension des mécanismes cellulaires et moléculaires impliquant le développement des circuits GABAergiques est la première étape vers une meilleure compréhension de la façon dont les anomalies de ces processus peuvent se produire. La molécule d’adhésion cellulaire neurale (NCAM) appartient à la super-famille des immunoglobulines de reconnaissance cellulaire et est impliquée dans des interactions homophiliques et hétérophiliques avec d’autres molécules. Même si plusieurs rôles de NCAM ont été démontrés dans la croissance neuronale, la fasciculation axonale, la formation et la maturation de synapses, de même que dans la plasticité cellulaire de plusieurs systèmes, le rôle de NCAM dans la formation des synapses GABAergiques reste inconnu. Ce projet visait donc à déterminer le rôle précis de NCAM dans le processus de maturation des synapses GABAergiques dans le néocortex, en modulant son expression à différentes étapes du développement. L’approche choisie a été de supprimer NCAM dans des cellules GABAergiques à paniers avant la maturation des synapses (EP12-18), pendant la maturation (EP16-24), ou durant le maintien de celles-ci (EP24-32). Les méthodes utilisées ont été le clonage moléculaire, l’imagerie confocale, la culture de coupes organotypiques et des techniques morphométriques de quantification de l’innervation GABAergique. Nos résultats montrent que l’inactivation de NCAM durant la phase de maturation des synapses périsomatiques (EP16-24) cause une réduction du nombre de synapses GABAergiques périsomatiques et du branchement de ces axones. En revanche, durant la phase de maintien (EP26-32), l’inactivation de NCAM n’a pas affecté ces paramètres des synapses GABAergiques. Or, il existe trois isoformes de NCAM (NCAM120, 140 et 180) qui pourraient jouer des rôles différents dans les divers types cellulaires ou à des stades développementaux différents. Nos données montrent que NCAM120 et 140 sont nécessaires à la maturation des synapses périsomatiques GABAergiques. Cependant, NCAM180, qui est l’isoforme la plus étudiée et caractérisée, ne semble pas être impliquée dans ce processus. De plus, l’inactivation de NCAM n’a pas affecté la densité des épines dendritiques ou leur longueur. Elle est donc spécifique aux synapses périsomatiques GABAeriques. Finalement, nos résultats suggèrent que le domaine conservé C-terminal KENESKA est essentiel à la maturation des synapses périsomatiques GABAergiques. Des expériences futures nous aiderons à mieux comprendre la mécanistique et les différentes voies de signalisation impliquées.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les circuits neuronaux peuvent générer une panoplie de rythmes. Nous pouvons séparer les mécanismes de création de ces rythmes en deux grands types. Le premier consiste de circuits contrôlés par des cellules « pacemakers », ayant une activité rythmique intrinsèque, comme dans le ganglion stomatogastique des crustacés. Le deuxième consiste de circuits multi-neuronaux connectés par un réseau synaptique qui permet une activité rythmique sans la présence de neurones pacemakers, tel que démontré pour les circuits de la nage chez plusieurs vertébrés. Malgré nos connaissances des mécanismes de rhythmogénèse chez les vertébrés adultes, les mécanismes de la création et la maturation de ces circuits locomoteurs chez les embryons restent encore inconnus. Nous avons étudié cette question à l’aide du poisson-zébré où les embryons débutent leur activité motrice par des contractions spontanées alternantes à 17 heures post-fertilisation (hpf). Des études ont démontré que cette activité spontanée n’est pas sensible aux antagonistes de la transmission synaptique chimique et ne requiert pas le rhombencéphale. Après 28 hpf, les embryons commencent à nager et se propulser en réponse au toucher. Des études antérieures on démontré que l’apparition de la nage nécessite le rhombencéphale et la transmission synaptique chimique. Cette thèse explore la possibilité que ces changements comportementaux représentent la progression d’un circuit contrôle par un pacemaker à un circuit ou le rythme provient d’un circuit distribué. En mesurant le groupement des contractions de l’activité spontanée, plutôt que la fréquence moyenne, nous avons découvert une nouvelle forme d’activité spontanée qui débute à 22 hpf. Cette activité consiste de deux contractions alternantes à succession très rapide. Contrairement à l’activité spontanée présente dès 17 hpf cette nouvelle forme d’activité requiert le rhombencéphale et la transmission synaptique chimique, comme démontré pour la nage qui apparait à 28 hpf. Cette forme de comportement intermédiaire représente potentiellement une étape transitoire lors de la maturation des circuits moteurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les habitudes de consommation de substances psychoactives, le stress, l’obésité et les traits cardiovasculaires associés seraient en partie reliés aux mêmes facteurs génétiques. Afin d’explorer cette hypothèse, nous avons effectué, chez 119 familles multi-générationnelles québécoises de la région du Saguenay-Lac-St-Jean, des études d’association et de liaison pangénomiques pour les composantes génétiques : de la consommation usuelle d’alcool, de tabac et de café, de la réponse au stress physique et psychologique, des traits anthropométriques reliés à l’obésité, ainsi que des mesures du rythme cardiaque (RC) et de la pression artérielle (PA). 58000 SNPs et 437 marqueurs microsatellites ont été utilisés et l’annotation fonctionnelle des gènes candidats identifiés a ensuite été réalisée. Nous avons détecté des corrélations phénotypiques significatives entre les substances psychoactives, le stress, l’obésité et les traits hémodynamiques. Par exemple, les consommateurs d’alcool et de tabac ont montré un RC significativement diminué en réponse au stress psychologique. De plus, les consommateurs de tabac avaient des PA plus basses que les non-consommateurs. Aussi, les hypertendus présentaient des RC et PA systoliques accrus en réponse au stress psychologique et un indice de masse corporelle (IMC) élevé, comparativement aux normotendus. D’autre part, l’utilisation de tabac augmenterait les taux corporels d’épinéphrine, et des niveaux élevés d’épinéphrine ont été associés à des IMC diminués. Ainsi, en accord avec les corrélations inter-phénotypiques, nous avons identifié plusieurs gènes associés/liés à la consommation de substances psychoactives, à la réponse au stress physique et psychologique, aux traits reliés à l’obésité et aux traits hémodynamiques incluant CAMK4, CNTN4, DLG2, DAG1, FHIT, GRID2, ITPR2, NOVA1, NRG3 et PRKCE. Ces gènes codent pour des protéines constituant un réseau d’interactions, impliquées dans la plasticité synaptique, et hautement exprimées dans le cerveau et ses tissus associés. De plus, l’analyse des sentiers de signalisation pour les gènes identifiés (P = 0,03) a révélé une induction de mécanismes de Potentialisation à Long Terme. Les variations des traits étudiés seraient en grande partie liées au sexe et au statut d’hypertension. Pour la consommation de tabac, nous avons noté que le degré et le sens des corrélations avec l’obésité, les traits hémodynamiques et le stress sont spécifiques au sexe et à la pression artérielle. Par exemple, si des variations ont été détectées entre les hommes fumeurs et non-fumeurs (anciens et jamais), aucune différence n’a été observée chez les femmes. Nous avons aussi identifié de nombreux traits reliés à l’obésité dont la corrélation avec la consommation de tabac apparaît essentiellement plus liée à des facteurs génétiques qu’au fait de fumer en lui-même. Pour le sexe et l’hypertension, des différences dans l’héritabilité de nombreux traits ont également été observées. En effet, des analyses génétiques sur des sous-groupes spécifiques ont révélé des gènes additionnels partageant des fonctions synaptiques : CAMK4, CNTN5, DNM3, KCNAB1 (spécifique à l’hypertension), CNTN4, DNM3, FHIT, ITPR1 and NRXN3 (spécifique au sexe). Ces gènes codent pour des protéines interagissant avec les protéines de gènes détectés dans l’analyse générale. De plus, pour les gènes des sous-groupes, les résultats des analyses des sentiers de signalisation et des profils d’expression des gènes ont montré des caractéristiques similaires à celles de l’analyse générale. La convergence substantielle entre les déterminants génétiques des substances psychoactives, du stress, de l’obésité et des traits hémodynamiques soutiennent la notion selon laquelle les variations génétiques des voies de plasticité synaptique constitueraient une interface commune avec les différences génétiques liées au sexe et à l’hypertension. Nous pensons, également, que la plasticité synaptique interviendrait dans de nombreux phénotypes complexes influencés par le mode de vie. En définitive, ces résultats indiquent que des approches basées sur des sous-groupes et des réseaux amélioreraient la compréhension de la nature polygénique des phénotypes complexes, et des processus moléculaires communs qui les définissent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La mémoire et l’apprentissage sont des phénomènes complexes qui demeurent encore incertains quant aux origines cellulaire et moléculaire. Il est maintenant connu que des changements au niveau des synapses, comme la plasticité synaptique, pourraient déterminer la base cellulaire de la formation de la mémoire. Alors que la potentialisation à long-terme (LTP) représente un renforcement de l’efficacité de transmission synaptique, la dépression à long-terme (LTD) constitue une diminution de l’efficacité des connexions synaptiques. Des études ont mis à jour certains mécanismes qui participent à ce phénomène de plasticité synaptique, notamment, les mécanismes d’induction et d’expression, ainsi que les changements morphologiques des épines dendritiques. La grande majorité des synapses excitatrices glutamatergiques se situe au niveau des épines dendritiques et la présence de la machinerie traductionnelle près de ces protubérances suggère fortement l’existence d’une traduction locale d’ARNm. Ces ARNm seraient d’ailleurs acheminés dans les dendrites par des protéines pouvant lier les ARNm et assurer leur transport jusqu’aux synapses activées. Le rôle des protéines Staufen (Stau1 et Stau2) dans le transport, la localisation et dans la régulation de la traduction de certains ARNm est bien établi. Toutefois, leur rôle précis dans la plasticité synaptique demeure encore inconnu. Ainsi, cette thèse de doctorat évalue l’importance des protéines Staufen pour le transport et la régulation d’ARNm dans la plasticité synaptique. Nous avons identifié des fonctions spécifiques à chaque isoforme; Stau1 et Stau2 étant respectivement impliquées dans la late-LTP et la LTD dépendante des récepteurs mGluR. Cette spécificité s’applique également au rôle que chaque isoforme joue dans la morphogenèse des épines dendritiques, puisque Stau1 semble nécessaire au maintien des épines dendritiques matures, alors que Stau2 serait davantage impliquée dans le développement des épines. D’autre part, nos travaux ont permis de déterminer que la morphogenèse des épines dendritiques dépendante de Stau1 était régulée par une plasticité synaptique endogène dépendante des récepteurs NMDA. Finalement, nous avons précisé les mécanismes de régulation de l’ARNm de la Map1b par Stau2 et démontré l’importance de Stau2 pour la production et l’assemblage des granules contenant les transcrits de la Map1b nécessaires pour la LTD dépendante des mGluR. Les travaux de cette thèse démontrent les rôles spécifiques des protéines Stau1 et Stau2 dans la régulation de la plasticité synaptique par les protéines Stau1 et Stau2. Nos travaux ont permis d’approfondir les connaissances actuelles sur les mécanismes de régulation des ARNm par les protéines Staufen dans la plasticité synaptique. MOTS-CLÉS EN FRANÇAIS: Staufen, hippocampe, plasticité synaptique, granules d’ARN, traduction, épines dendritiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les troubles schizophréniques (SCZ) ont une forte héritabilité, de l’ordre de 80%, mais, une très faible part du risque génétique a été identifiée. La plupart des études ont considéré l’implication de polymorphismes fréquents, chacun ayant un effet relativement faible individuellement, alors que les études de variants du nombre de copies (CNVs) ainsi que les études d’anomalies chromosomiques ont pointé l’implication possible de variants rares et de novo à une forte pénétrance. Dans une première partie, nous présentons une synthèse sur les facteurs génétiques dans la SCZ, puis une revue des arguments en faveur de l’implication d’anomalies du système glutamatergique dans la SCZ, domaine sur lequel s’est centré notre travail. Notre travail s’inscrit dans un projet plus vaste, Synapse to Disease (S2D) ayant pour objectif de séquencer 1000 gènes synaptiques dans des cohortes de patients atteints de schizophrénie ou de troubles du spectre autistique. Nous avons exploré en particulier le système glutamatergique et les récepteurs NMDA. Dans un premier article, nous montrons une association d’une mutation troncante de novo de la kinésine 17, impliquée dans le transport de la sous-unité GRIN2B des récepteurs NMDA. Dans un second article, nous explorons les mutations rares et de novo dans les sous-unités des récepteurs NMDA et montrons l’association de mutation de novo dans GRIN2A et GRIN2B avec des cas de SCZ et d’autisme. Nos résultats renforcent l’idée qu’une part des cas de schizophrénie pourrait être due à l’implication de mutations rare à effet majeur, hypothèse alternative mais non exclusive à l’hypothèse d’interactions entre variants génétiques fréquents à effet mineur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La dopamine (DA) est un neurotransmetteur impliqué dans la modulation de fonctions essentielles du cerveau telles que le contrôle des mouvements volontaires, le système de récompense et certains aspects de la cognition. Depuis sa découverte, la DA a attiré énormément d'attention scientifique en partie à cause des pathologies majeures associées aux dysfonctions du système DAergique, comme la maladie de Parkinson, la schizophrénie et la toxicomanie. On retrouve la majorité des neurones qui synthétisent la DA au niveau du mésencéphale ventral, dans les noyaux de la substance noire compacte (SNc) et de l'aire tegmentaire ventrale (ATV). Ces neurones projettent leurs axones dans un très dense réseau de fibres qui s'organisent en trois voies DAergiques classiques: la voie nigrostriée, la voie mésolimbique et la voie mésocorticale. La transmission DAergique s'effectue par l'activation de récepteurs de la DA qui font partie de la grande famille des récepteurs couplés aux protéines G (RCPGs). Les récepteurs de la DA sont abondamment exprimés aussi bien par les neurones DAergiques que par les neurones des régions cibles, ce qui implique que la compréhension de la signalisation et des fonctions particulières des récepteurs de la DA pré- et postsynaptiques représente un enjeu crucial dans l'étude du système DAergique. Cette thèse de doctorat se sépare donc en deux volets distincts: le premier s'intéresse à la régulation du récepteur D2 présynaptique par la neurotensine (NT), un neuropeptide intimement lié à la modulation du système DAergique; le deuxième s'intéresse au côté postsynaptique du système DAergique, plus particulièrement à la ségrégation de l'expression des récepteurs de la DA dans le striatum et aux fonctions de ces récepteurs dans l'établissement des circuits neuronaux excitateurs prenant place dans cette région. Dans la première partie de cette thèse, nous démontrons que l'activation du récepteur à haute affinité de la NT, le NTR1, provoque une internalisation hétérologue du récepteur D2, avec une amplitude et une cinétique différente selon l'isoforme D2 observé. Cette internalisation hétérologue dépend de la protéine kinase C (PKC), et nous montrons que la surexpression d'un récepteur D2 muté sur des sites de phosphorylation par la PKC ii ainsi que l'inhibition de l'expression de β-arrestine1 par ARNs interférents dans des neurones DAergiques bloquent complètement l'interaction fonctionnelle entre le NTR1 et le D2. Dans la deuxième partie de cette thèse, nous démontrons d'abord que la ségrégation de l'expression des récepteurs D1 et D2 dans le striatum est déjà bien établie dès le 18e jour embryonnaire, bien qu'elle progresse encore significativement aux jours 0 et 14 postnataux. Nos résultats témoignent aussi d'un maintien complet de cette ségrégation lorsque les neurones striataux sont mis en culture aussi bien en présence ou en absence de neurones corticaux et/ou mésencéphaliques. Ensuite, nous montrons que la présence de neurones mésencéphaliques stimule la formation d’épines et de synapses excitatrices sur les neurones striataux épineux exprimant le récepteur D2 (MSN-D2). Le co-phénotype glutamatergique des neurones dopaminergiques semble nécessaire à une grande partie de cet effet. Par ailleurs, le nombre total de terminaisons excitatrices formées sur les MSN-D2 par les neurones corticaux et mésencéphaliques apparaît être régit par un équilibre dynamique. Finalement, nous démontrons que le blocage de la signalisation des récepteurs D1 et D2 de la DA n'est pas nécessaire pour la formation des synapses excitatrices des MSN-D2, alors que l'antagonisme des récepteurs glutamatergiques ionotropes diminue la densité d'épines dendritiques et contrôle de façon opposée le nombre de terminaisons excitatrices corticales et mésencéphaliques. Globalement, ce travail représente une contribution significative pour une meilleure compréhension du fonctionnement normal du système DAergique. Ces découvertes sont susceptibles d’être utiles pour mieux comprendre les dysfonctions de ce système dans le cadre de pathologies du cerveau comme la maladie de Parkinson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’encéphalopathie hypoxique-­‐ischémique cause des milliers de victimes à travers le monde chaque année. Les enfants survivants à un épisode hypoxique-­‐ischémique sont à risque de développer des problèmes neurologiques incapacitants comme une paralysie cérébrale, un retard mental, une épilepsie ou des troubles d’ordre comportemental. Les modèles animaux ont amélioré nos connaissances sur les mécanismes sous-­‐jacents aux dommages cérébraux, mais elles sont encore trop incomplètes pour être capables de prévenir les problèmes neurologiques. Ce projet vise à comprendre l’impact d’un épisode asphyxique périnatale associé à des convulsions ainsi que l’activation de l’adenosine monophosphate-­‐activated protein kinase (AMPK) sur les circuits GABAergiques inhibiteurs en développement chez la souris. Dans le but d’investiguer le sort des neurones inhibiteurs, appelés interneurones, suite à un épisode asphyxique périnatal associé à des convulsions avec des animaux transgéniques, nous avons pris avantage d’un nouveau modèle d’hypoxie permettant d’induire des convulsions chez la souris. Deux populations d’interneurones représentant ensemble environ 60% de tous les interneurones corticaux ont été étudiées, soit les cellules exprimant la parvalbumine (PV) et les cellules exprimant la somatostatine (SOM). L’étude stéréologique n’a montré aucune mort neuronale de ces deux populations d’interneurones dans l’hippocampe chez les souris hypoxique d’âge adulte. Par contre, le cortex des souris hypoxiques présentait des zones complètement ou fortement dépourvues de cellules PV alors que les cellules SOM n’étaient pas affectées. L’utilisation d’une lignée de souris transgénique exprimant une protéine verte fluorescente (GFP) dans les cellules PV nous a permis de comprendre que les trous PV sont le reflet de deux choses : 1) une diminution des cellules PV et 2) une immaturité des cellules PV restantes. Puisque les cellules PV sont spécifiquement affectées dans la première partie de notre étude, nous avons voulu étudier les mécanismes moléculaires sous-­‐jacents à cette vulnérabilité. L’AMPK est un senseur d’énergie qui orchestre le rétablissement des i niveaux d’énergie cellulaire dans le cas d’une déplétion énergétique en modulant des voies de signalisation impliquant la synthèse de protéines et l’excitabilité membranaire. Il est possible que l’activation d’AMPK suite à un épisode asphyxique périnatal associé à des convulsions soit néfaste à long-­‐terme pour le circuit GABAergique en développement et modifie l’établissement de l’innervation périsomatique d’une cellule PV sur les cellules pyramidales. Nous avons étudié cette hypothèse dans un modèle de culture organotypique en surexprimant la forme wild-­‐type (WT) de la sous-­‐unité α2 d’AMPK, ainsi qu’une forme mutée dominante négative (DN), dans des cellules PV individuelles. Nous avons montré que pendant la phase de formation synaptique (jours post-­‐natals équivalents EP 10-­‐18), la surexpression de la forme WT désorganise la stabilisation des synapses. De plus, l’abolition de l’activité d’AMPK semble augmenter le nombre de synapses périsomatiques faits par la cellule PV sur les cellules pyramidales pendant la phase de formation et semble avoir l’effet inverse pendant la phase de maturation (EP 16-­‐24). La neurotransmission GABAergique joue plusieurs rôles dans le cerveau, depuis la naissance jusqu’à l’âge adulte des interneurones, et une dysfonction des interneurones a été associée à plusieurs troubles neurologiques, comme la schizophrénie, l’autisme et l’épilepsie. La maturation des circuits GABAergiques se fait majoritairement pendant la période post-­‐natale et est hautement dépendante de l’activité neuronale et de l’expérience sensorielle. Nos résultats révèlent que le lourd fardeau en demande énergétique d’un épisode asphyxique périnatal peut causer une mort neuronale sélective des cellules PV et compromettre l’intégrité de leur maturation. Un des mécanismes sous-­‐ jacents possible à cette immaturité des cellules PV suite à l’épisode hypoxique est l’activation d’AMPK, en désorganisant leur profil d’innervation sur les cellules pyramidales. Nous pensons que ces changements dans le réseau GABAergique pourrait contribuer aux problèmes neurologiques associés à une insulte hypoxique.