7 resultados para genetic algorithm-kernel partial least squares

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero at some process. Kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression are commonly used. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. in this paper, we first show that this least squares bias induces a significant increase in the bias and mean-squared error of kernel-based estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’analyse biomécanique du mouvement humain en utilisant des systèmes optoélectroniques et des marqueurs cutanés considère les segments du corps comme des corps rigides. Cependant, le mouvement des tissus mous par rapport à l'os, c’est à dire les muscles et le tissu adipeux, provoque le déplacement des marqueurs. Ce déplacement est le fait de deux composantes, une composante propre correspondant au mouvement aléatoire de chaque marqueur et une composante à l’unisson provoquant le déplacement commun des marqueurs cutanés lié au mouvement des masses sous-jacentes. Si nombre d’études visent à minimiser ces déplacements, des simulations ont montré que le mouvement des masses molles réduit la dynamique articulaire. Cette observation est faite uniquement par la simulation, car il n'existe pas de méthodes capables de dissocier la cinématique des masses molles de celle de l’os. L’objectif principal de cette thèse consiste à développer une méthode numérique capable de distinguer ces deux cinématiques. Le premier objectif était d'évaluer une méthode d'optimisation locale pour estimer le mouvement des masses molles par rapport à l’humérus obtenu avec une tige intra-corticale vissée chez trois sujets. Les résultats montrent que l'optimisation locale sous-estime de 50% le déplacement des marqueurs et qu’elle conduit à un classement de marqueurs différents en fonction de leur déplacement. La limite de cette méthode vient du fait qu'elle ne tient pas compte de l’ensemble des composantes du mouvement des tissus mous, notamment la composante en unisson. Le second objectif était de développer une méthode numérique qui considère toutes les composantes du mouvement des tissus mous. Plus précisément, cette méthode devait fournir une cinématique similaire et une plus grande estimation du déplacement des marqueurs par rapport aux méthodes classiques et dissocier ces composantes. Le membre inférieur est modélisé avec une chaine cinématique de 10 degrés de liberté reconstruite par optimisation globale en utilisant seulement les marqueurs placés sur le pelvis et la face médiale du tibia. L’estimation de la cinématique sans considérer les marqueurs placés sur la cuisse et le mollet permet d'éviter l’influence de leur déplacement sur la reconstruction du modèle cinématique. Cette méthode testée sur 13 sujets lors de sauts a obtenu jusqu’à 2,1 fois plus de déplacement des marqueurs en fonction de la méthode considérée en assurant des cinématiques similaires. Une approche vectorielle a montré que le déplacement des marqueurs est surtout dû à la composante à l’unisson. Une approche matricielle associant l’optimisation locale à la chaine cinématique a montré que les masses molles se déplacent principalement autour de l'axe longitudinal et le long de l'axe antéro-postérieur de l'os. L'originalité de cette thèse est de dissocier numériquement la cinématique os de celle des masses molles et les composantes de ce mouvement. Les méthodes développées dans cette thèse augmentent les connaissances sur le mouvement des masses molles et permettent d’envisager l’étude de leur effet sur la dynamique articulaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.