2 resultados para extensive
em Université de Montréal, Canada
Resumo:
Extensive social choice theory is used to study the problem of measuring group fitness in a two-level biological hierarchy. Both fixed and variable group size are considered. Axioms are identified that imply that the group measure satisfies a form of consequentialism in which group fitness only depends on the viabilities and fecundities of the individuals at the lower level in the hierarchy. This kind of consequentialism can take account of the group fitness advantages of germ-soma specialization, which is not possible with an alternative social choice framework proposed by Okasha, but which is an essential feature of the index of group fitness for a multicellular organism introduced by Michod, Viossat, Solari, Hurand, and Nedelcu to analyze the unicellular-multicellular evolutionary transition. The new framework is also used to analyze the fitness decoupling between levels that takes place during an evolutionary transition.
Resumo:
Background: Campylobacter jejuni is responsible for human foodborne enteritis. This bacterium is a remarkable colonizer of the chicken gut, with some strains outcompeting others for colonization. To better understand this phenomenon, the objective of this study was to extensively characterize the phenotypic performance of C. jejuni chicken strains and associate their gut colonizing ability with specific genes. Results: C. jejuni isolates (n = 45) previously analyzed for the presence of chicken colonization associated genes were further characterized for phenotypic properties influencing colonization: autoagglutination and chemotaxis as well as adhesion to and invasion of primary chicken caecal cells. This allowed strains to be ranked according to their in vitro performance. After their in vitro capacity to outcompete was demonstrated in vivo, strains were then typed by comparative genomic fingerprinting (CGF). In vitro phenotypical properties displayed a linear variability among the tested strains. Strains possessing higher scores for phenotypical properties were able to outcompete others during chicken colonization trials. When the gene content of strains was compared, some were associated with different phenotypical scores and thus with different outcompeting capacities. Use of CGF profiles showed an extensive genetic variability among the studied strains and suggested that the outcompeting capacity is not predictable by CGF profile. Conclusion: This study revealed a wide array of phenotypes present in C. jejuni strains, even though they were all recovered from chicken caecum. Each strain was classified according to its in vitro competitive potential and its capacity to compete for chicken gut colonization was associated with specific genes. This study also exposed the disparity existing between genetic typing and phenotypical behavior of C. jejuni strains.