25 resultados para error rates
em Université de Montréal, Canada
Resumo:
Le but de cette étude est de vérifier l'apport de la stéréoscopie dans le phénomène de la constance de forme. La méthode utilisée consiste à mesurer la performance de différents participants (temps de réponse et de taux d'erreurs) à une tâche de prospection visuelle. Quatre groupes de participants ont effectué la tâche. Le premier groupe a été exposé à une présentation stéréoscopique des stimuli, le deuxième groupe à une présentation des stimuli en stéréoscopie inversée (la disparité binoculaire était inversée), le troisième groupe à des stimuli comprenant une information de texture, mais sans stéréoscopie et le quatrième groupe à des stimuli bi-dimensionnels, sans texture. Une interaction entre les effets de rotation (points de vue familiers vs. points de vue non familiers) et le type d'information de profondeur disponible (stéréoscopie, stéréoscopie inversée, texture ou ombrage) a été mise en évidence, le coût de rotation étant plus faible au sein du groupe exposé à une présentation en stéréoscopie inversée. Ces résultats appuient l'implication de représentations tridimensionnelles dans le traitement de l'information visuelle.
Resumo:
Une variété de modèles sur le processus de prise de décision dans divers contextes présume que les sujets accumulent les évidences sensorielles, échantillonnent et intègrent constamment les signaux pour et contre des hypothèses alternatives. L'intégration continue jusqu'à ce que les évidences en faveur de l'une des hypothèses dépassent un seuil de critère de décision (niveau de preuve exigé pour prendre une décision). De nouveaux modèles suggèrent que ce processus de décision est plutôt dynamique; les différents paramètres peuvent varier entre les essais et même pendant l’essai plutôt que d’être un processus statique avec des paramètres qui ne changent qu’entre les blocs d’essais. Ce projet de doctorat a pour but de démontrer que les décisions concernant les mouvements d’atteinte impliquent un mécanisme d’accumulation temporelle des informations sensorielles menant à un seuil de décision. Pour ce faire, nous avons élaboré un paradigme de prise de décision basée sur un stimulus ambigu afin de voir si les neurones du cortex moteur primaire (M1), prémoteur dorsal (PMd) et préfrontal (DLPFc) démontrent des corrélats neuronaux de ce processus d’accumulation temporelle. Nous avons tout d’abord testé différentes versions de la tâche avec l’aide de sujets humains afin de développer une tâche où l’on observe le comportement idéal des sujets pour nous permettre de vérifier l’hypothèse de travail. Les données comportementales chez l’humain et les singes des temps de réaction et du pourcentage d'erreurs montrent une augmentation systématique avec l'augmentation de l'ambigüité du stimulus. Ces résultats sont cohérents avec les prédictions des modèles de diffusion, tel que confirmé par une modélisation computationnelle des données. Nous avons, par la suite, enregistré des cellules dans M1, PMd et DLPFc de 2 singes pendant qu'ils s'exécutaient à la tâche. Les neurones de M1 ne semblent pas être influencés par l'ambiguïté des stimuli mais déchargent plutôt en corrélation avec le mouvement exécuté. Les neurones du PMd codent la direction du mouvement choisi par les singes, assez rapidement après la présentation du stimulus. De plus, l’activation de plusieurs cellules du PMd est plus lente lorsque l'ambiguïté du stimulus augmente et prend plus de temps à signaler la direction de mouvement. L’activité des neurones du PMd reflète le choix de l’animal, peu importe si c’est une bonne réponse ou une erreur. Ceci supporte un rôle du PMd dans la prise de décision concernant les mouvements d’atteinte. Finalement, nous avons débuté des enregistrements dans le cortex préfrontal et les résultats présentés sont préliminaires. Les neurones du DLPFc semblent beaucoup plus influencés par les combinaisons des facteurs de couleur et de position spatiale que les neurones du PMd. Notre conclusion est que le cortex PMd est impliqué dans l'évaluation des évidences pour ou contre la position spatiale de différentes cibles potentielles mais assez indépendamment de la couleur de celles-ci. Le cortex DLPFc serait plutôt responsable du traitement des informations pour la combinaison de la couleur et de la position des cibles spatiales et du stimulus ambigu nécessaire pour faire le lien entre le stimulus ambigu et la cible correspondante.
Resumo:
Prevalent face recognition difficulties in Alzheimer’s disease (AD) have typically been attributed to the underlying episodic and semantic memory impairment. The aim of the current study was to determine if AD patients are also impaired at the perceptual level for faces, more specifically at extracting a visual representation of an individual face. To address this question, we investigated the matching of simultaneously presented individual faces and of other nonface familiar shapes (cars), at both upright and inverted orientation, in a group of mild AD patients and in a group of healthy older controls matched for age and education. AD patients showed a reduced inversion effect (i.e., larger performance for upright than inverted stimuli) for faces, but not for cars, both in terms of error rates and response times. While healthy participants showed a much larger decrease in performance for faces than for cars with inversion, the inversion effect did not differ significantly for faces and cars in AD. This abnormal inversion effect for faces was observed in a large subset of individual patients with AD. These results suggest that AD patients have deficits in higher-level visual processes, more specifically at perceiving individual faces, a function that relies on holistic representations specific to upright face stimuli. These deficits, combined with their memory impairment, may contribute to the difficulties in recognizing familiar people that are often reported in patients suffering from the disease and by their caregivers.
Resumo:
In an economy where cash can be stored costlessly (in nominal terms), the nominal interest rate is bounded below by zero. This paper derives the implications of this nonnegativity constraint for the term structure and shows that it induces a nonlinear and convex relation between short- and long-term interest rates. As a result, the long-term rate responds asymmetrically to changes in the short-term rate, and by less than predicted by a benchmark linear model. In particular, a decrease in the short-term rate leads to a decrease in the long-term rate that is smaller in magnitude than the increase in the long-term rate associated with an increase in the short-term rate of the same size. Up to the extent that monetary policy acts by affecting long-term rates through the term structure, its power is considerably reduced at low interest rates. The empirical predictions of the model are examined using data from Japan.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Rapport de recherche
Resumo:
Understanding the dynamics of interest rates and the term structure has important implications for issues as diverse as real economic activity, monetary policy, pricing of interest rate derivative securities and public debt financing. Our paper follows a longstanding tradition of using factor models of interest rates but proposes a semi-parametric procedure to model interest rates.