3 resultados para embeddings

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.