37 resultados para efficient algorithm
em Université de Montréal, Canada
Resumo:
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
Le but de cette thèse est d’explorer le potentiel sismique des étoiles naines blanches pulsantes, et en particulier celles à atmosphères riches en hydrogène, les étoiles ZZ Ceti. La technique d’astérosismologie exploite l’information contenue dans les modes normaux de vibration qui peuvent être excités lors de phases particulières de l’évolution d’une étoile. Ces modes modulent le flux émergent de l’étoile pulsante et se manifestent principalement en termes de variations lumineuses multi-périodiques. L’astérosismologie consiste donc à examiner la luminosité d’étoiles pulsantes en fonction du temps, afin d’en extraire les périodes, les amplitudes apparentes, ainsi que les phases relatives des modes de pulsation détectés, en utilisant des méthodes standards de traitement de signal, telles que des techniques de Fourier. L’étape suivante consiste à comparer les périodes de pulsation observées avec des périodes générées par un modèle stellaire en cherchant l’accord optimal avec un modèle physique reconstituant le plus fidèlement possible l’étoile pulsante. Afin d’assurer une recherche optimale dans l’espace des paramètres, il est nécessaire d’avoir de bons modèles physiques, un algorithme d’optimisation de comparaison de périodes efficace, et une puissance de calcul considérable. Les périodes des modes de pulsation de modèles stellaires de naines blanches peuvent être généralement calculées de manière précise et fiable sur la base de la théorie linéaire des pulsations stellaires dans sa version adiabatique. Afin de définir dans son ensemble un modèle statique de naine blanche propre à l’analyse astérosismologique, il est nécessaire de spécifier la gravité de surface, la température effective, ainsi que différents paramètres décrivant la disposition en couche de l’enveloppe. En utilisant parallèlement les informations obtenues de manière indépendante (température effective et gravité de surface) par la méthode spectroscopique, il devient possible de vérifier la validité de la solution obtenue et de restreindre de manière remarquable l’espace des paramètres. L’exercice astérosismologique, s’il est réussi, mène donc à la détermination précise des paramètres de la structure globale de l’étoile pulsante et fournit de l’information unique sur sa structure interne et l’état de sa phase évolutive. On présente dans cette thèse l’analyse complète réussie, de l’extraction des fréquences à la solution sismique, de quatre étoiles naines blanches pulsantes. Il a été possible de déterminer les paramètres structuraux de ces étoiles et de les comparer remarquablement à toutes les contraintes indépendantes disponibles dans la littérature, mais aussi d’inférer sur la dynamique interne et de reconstruire le profil de rotation interne. Dans un premier temps, on analyse le duo d’étoiles ZZ Ceti, GD 165 et Ross 548, afin de comprendre les différences entre leurs propriétés de pulsation, malgré le fait qu’elles soient des étoiles similaires en tout point, spectroscopiquement parlant. L’analyse sismique révèle des structures internes différentes, et dévoile la sensibilité de certains modes de pulsation à la composition interne du noyau de l’étoile. Afin de palier à cette sensibilité, nouvellement découverte, et de rivaliser avec les données de qualité exceptionnelle que nous fournissent les missions spatiales Kepler et Kepler2, on développe une nouvelle paramétrisation des profils chimiques dans le coeur, et on valide la robustesse de notre technique et de nos modèles par de nombreux tests. Avec en main la nouvelle paramétrisation du noyau, on décroche enfin le ”Saint Graal” de l’astérosismologie, en étant capable de reproduire pour la première fois les périodes observées à la précision des observations, dans le cas de l’étude sismique des étoiles KIC 08626021 et de GD 1212.
Resumo:
We study the assignment of indivisible objects with quotas (houses, jobs, or offices) to a set of agents (students, job applicants, or professors). Each agent receives at most one object and monetary compensations are not possible. We characterize efficient priority rules by efficiency, strategy-proofness, and reallocation-consistency. Such a rule respects an acyclical priority structure and the allocations can be determined using the deferred acceptance algorithm.
Resumo:
La microscopie par fluorescence de cellules vivantes produit de grandes quantités de données. Ces données sont composées d’une grande diversité au niveau de la forme des objets d’intérêts et possèdent un ratio signaux/bruit très bas. Pour concevoir un pipeline d’algorithmes efficaces en traitement d’image de microscopie par fluorescence, il est important d’avoir une segmentation robuste et fiable étant donné que celle-ci constitue l’étape initiale du traitement d’image. Dans ce mémoire, je présente MinSeg, un algorithme de segmentation d’image de microscopie par fluorescence qui fait peu d’assomptions sur l’image et utilise des propriétés statistiques pour distinguer le signal par rapport au bruit. MinSeg ne fait pas d’assomption sur la taille ou la forme des objets contenus dans l’image. Par ce fait, il est donc applicable sur une grande variété d’images. Je présente aussi une suite d’algorithmes pour la quantification de petits complexes dans des expériences de microscopie par fluorescence de molécules simples utilisant l’algorithme de segmentation MinSeg. Cette suite d’algorithmes a été utilisée pour la quantification d’une protéine nommée CENP-A qui est une variante de l’histone H3. Par cette technique, nous avons trouvé que CENP-A est principalement présente sous forme de dimère.
Resumo:
This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.
Resumo:
We analyze collective choice procedures with respect to their rationalizability by means of profiles of individual preference orderings. A selection function is a generalization of a choice function where selected alternatives may depend on a reference (or status quo) alternative in addition to the set of feasible options. Given the number of agents n, a selection function satisfies efficient and non-deteriorating n-rationalizability if there exists a profile of n orderings on the universal set of alternatives such that the selected alternatives are (i) efficient for that profile, and (ii) at least as good as the reference option according to each individual preference. We analyze efficient and non-deteriorating collective choice in a general abstract framework and provide a characterization result given a universal set domain.
Resumo:
In a linear production model, we characterize the class of efficient and strategy-proof allocation functions, and the class of efficient and coalition strategy-proof allocation functions. In the former class, requiring equal treatment of equals allows us to identify a unique allocation function. This function is also the unique member of the latter class which satisfies uniform treatment of uniforms.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
We consider the problem of assigning students to schools on the basis of priorities. Students are allowed to have equal priority at a school. We characterize the efficient rules which weakly/strongly respect students’ priorities. When priority orderings are not strict, it is not possible to simply break ties in a fixed manner. All possibilities of resolving the indifferences need to be considered. Neither the deferred acceptance algorithm nor the top trading cycle algorithm successfully solve the problem of efficiently assigning the students to schools whereas a modified version of the deferred acceptance algorithm might. In this version tie breaking depends on students’ preferences.
Resumo:
Affiliation: Zhujun Ao, Éric Cohen & Xiaojian Yao : Département de microbiologie et immunologie, Faculté de Médecine, Université de Montréal
Resumo:
Rapport de recherche
Resumo:
Uncertainties as to future supply costs of nonrenewable natural resources, such as oil and gas, raise the issue of the choice of supply sources. In a perfectly deterministic world, an efficient use of multiple sources of supply requires that any given market exhausts the supply it can draw from a low cost source before moving on to a higher cost one; supply sources should be exploited in strict sequence of increasing marginal cost, with a high cost source being left untouched as long as a less costly source is available. We find that this may not be the efficient thing to do in a stochastic world. We show that there exist conditions under which it can be efficient to use a risky supply source in order to conserve a cheaper non risky source. The benefit of doing this comes from the fact that it leaves open the possibility of using it instead of the risky source in the event the latter’s future cost conditions suddenly deteriorate. There are also conditions under which it will be efficient to use a more costly non risky source while a less costly risky source is still available. The reason is that this conserves the less costly risky source in order to use it in the event of a possible future drop in its cost.
Resumo:
L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.