4 resultados para distributed learning content management

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quand le E-learning a émergé il ya 20 ans, cela consistait simplement en un texte affiché sur un écran d'ordinateur, comme un livre. Avec les changements et les progrès dans la technologie, le E-learning a parcouru un long chemin, maintenant offrant un matériel éducatif personnalisé, interactif et riche en contenu. Aujourd'hui, le E-learning se transforme de nouveau. En effet, avec la prolifération des systèmes d'apprentissage électronique et des outils d'édition de contenu éducatif, ainsi que les normes établies, c’est devenu plus facile de partager et de réutiliser le contenu d'apprentissage. En outre, avec le passage à des méthodes d'enseignement centrées sur l'apprenant, en plus de l'effet des techniques et technologies Web2.0, les apprenants ne sont plus seulement les récipiendaires du contenu d'apprentissage, mais peuvent jouer un rôle plus actif dans l'enrichissement de ce contenu. Par ailleurs, avec la quantité d'informations que les systèmes E-learning peuvent accumuler sur les apprenants, et l'impact que cela peut avoir sur leur vie privée, des préoccupations sont soulevées afin de protéger la vie privée des apprenants. Au meilleur de nos connaissances, il n'existe pas de solutions existantes qui prennent en charge les différents problèmes soulevés par ces changements. Dans ce travail, nous abordons ces questions en présentant Cadmus, SHAREK, et le E-learning préservant la vie privée. Plus précisément, Cadmus est une plateforme web, conforme au standard IMS QTI, offrant un cadre et des outils adéquats pour permettre à des tuteurs de créer et partager des questions de tests et des examens. Plus précisément, Cadmus fournit des modules telles que EQRS (Exam Question Recommender System) pour aider les tuteurs à localiser des questions appropriées pour leur examens, ICE (Identification of Conflits in Exams) pour aider à résoudre les conflits entre les questions contenu dans un même examen, et le Topic Tree, conçu pour aider les tuteurs à mieux organiser leurs questions d'examen et à assurer facilement la couverture des différent sujets contenus dans les examens. D'autre part, SHAREK (Sharing REsources and Knowledge) fournit un cadre pour pouvoir profiter du meilleur des deux mondes : la solidité des systèmes E-learning et la flexibilité de PLE (Personal Learning Environment) tout en permettant aux apprenants d'enrichir le contenu d'apprentissage, et les aider à localiser nouvelles ressources d'apprentissage. Plus précisément, SHAREK combine un système recommandation multicritères, ainsi que des techniques et des technologies Web2.0, tels que le RSS et le web social, pour promouvoir de nouvelles ressources d'apprentissage et aider les apprenants à localiser du contenu adapté. Finalement, afin de répondre aux divers besoins de la vie privée dans le E-learning, nous proposons un cadre avec quatre niveaux de vie privée, ainsi que quatre niveaux de traçabilité. De plus, nous présentons ACES (Anonymous Credentials for E-learning Systems), un ensemble de protocoles, basés sur des techniques cryptographiques bien établies, afin d'aider les apprenants à atteindre leur niveau de vie privée désiré.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les étudiants gradués et les professeurs (les chercheurs, en général), accèdent, passent en revue et utilisent régulièrement un grand nombre d’articles, cependant aucun des outils et solutions existants ne fournit la vaste gamme de fonctionnalités exigées pour gérer correctement ces ressources. En effet, les systèmes de gestion de bibliographie gèrent les références et les citations, mais ne parviennent pas à aider les chercheurs à manipuler et à localiser des ressources. D'autre part, les systèmes de recommandation d’articles de recherche et les moteurs de recherche spécialisés aident les chercheurs à localiser de nouvelles ressources, mais là encore échouent dans l’aide à les gérer. Finalement, les systèmes de gestion de contenu d'entreprise offrent les fonctionnalités de gestion de documents et des connaissances, mais ne sont pas conçus pour les articles de recherche. Dans ce mémoire, nous présentons une nouvelle classe de systèmes de gestion : système de gestion et de recommandation d’articles de recherche. Papyres (Naak, Hage, & Aïmeur, 2008, 2009) est un prototype qui l’illustre. Il combine des fonctionnalités de bibliographie avec des techniques de recommandation d’articles et des outils de gestion de contenu, afin de fournir un ensemble de fonctionnalités pour localiser les articles de recherche, manipuler et maintenir les bibliographies. De plus, il permet de gérer et partager les connaissances relatives à la littérature. La technique de recommandation utilisée dans Papyres est originale. Sa particularité réside dans l'aspect multicritère introduit dans le processus de filtrage collaboratif, permettant ainsi aux chercheurs d'indiquer leur intérêt pour des parties spécifiques des articles. De plus, nous proposons de tester et de comparer plusieurs approches afin de déterminer le voisinage dans le processus de Filtrage Collaboratif Multicritère, de telle sorte à accroître la précision de la recommandation. Enfin, nous ferons un rapport global sur la mise en œuvre et la validation de Papyres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Avec l’abondance d’information gratuite disponible en ligne, la tâche de trouver, de trier et d’acheminer de l’information pertinente à l’auditoire approprié peut s’avérer laborieuse. En décembre 2010, la Bibliothèque virtuelle canadienne de santé / Canadian Virtual Health Library (BVCS) a formé un comité d’experts afin d’identifier, d’évaluer, de sélectionner et d’organiser des ressources d’intérêt pour les professionnels de la santé. Méthodes: Cette affiche identifiera les décisions techniques du comité d’experts, incluant le système de gestion de contenus retenu, l’utilisation des éléments Dublin Core et des descripteurs Medical Subject Headings pour la description des ressources, et le développement et l’adaptation de taxonomies à partir de la classification MeSH. La traduction française des descripteurs MeSH à l’aide du portail CISMeF sera également abordée. Résultats: Au mois de mai 2011, le comité a lancé la base de données BVCS de ressources en ligne gratuites sur la santé, regroupant plus de 1600 sites web et ressources. Une variété de types de contenus sont représentés, incluant des articles et rapports, des bases de données interactives et des outils de pratique clinique. Discussion: Les bénéfices et défis d’une collaboration pancanadienne virtuelle seront présentés, ainsi que l’inclusion cruciale d’un membre francophone pour composer avec la nature bilingue de la base de données. En lien avec cet aspect du projet, l’affiche sera présentée en français et en anglais. Introduction: With the abundance of freely available online information, the task of finding, filtering and fitting relevant information to the appropriate audience, is daunting. In December 2010 the Canadian Virtual Health Library / Bibliothèque virtuelle canadienne de santé (CVHL) formed an expert committee to identify, evaluate, select and organize resources relevant to health professionals. Methods: This poster will identify the key technical decisions of the expert committee including the content management system used to manage the data, the use of Dublin Core elements and Medical Subject Headings to describe the resources, and the development and adaptation of taxonomies from MeSH classification to catalog resources. The translation of MeSH terms to French using the CiSMeF portal will also be discussed. Results: In May 2010, the committee launched the CVHL database of free web-based health resources. Content ranged from online articles and reports to videos, interactive databases and clinical practice tools, and included more than 1,600 websites and resources. Discussion: The benefits and challenges of a virtual, pan-Canadian collaboration, and the critical inclusion of a Francophone member to address the bilingual nature of the database, will be presented. In keeping with the nature of the project, the poster will be presented in French and English.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.