19 resultados para continuous nonlinear programming
em Université de Montréal, Canada
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
This paper proves a new representation theorem for domains with both discrete and continuous variables. The result generalizes Debreu's well-known representation theorem on connected domains. A strengthening of the standard continuity axiom is used in order to guarantee the existence of a representation. A generalization of the main theorem and an application of the more general result are also presented.
Resumo:
We characterize Paretian quasi-orders in the two-agent continuous case.
Resumo:
This paper derives optimal monetary policy rules in setups where certainty equivalence does not hold because either central bank preferences are not quadratic, and/or the aggregate supply relation is nonlinear. Analytical results show that these features lead to sign and size asymmetries, and nonlinearities in the policy rule. Reduced-form estimates indicate that US monetary policy can be characterized by a nonlinear policy rule after 1983, but not before 1979. This finding is consistent with the view that the Fed's inflation preferences during the Volcker-Greenspan regime differ considerably from the ones during the Burns-Miller regime.
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.
Resumo:
Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.
Resumo:
À cause de la nature complexe et non linéaire de leurs opérations, les salles d’urgence (SU) constituent des entités organisationnelles uniques dans le domaine de la santé. Les SU subissent des pressions accrues résultant des dynamiques des sociétés contemporaines et de leurs systèmes de santé, et font face ainsi à des défis uniques comme l’engorgement. Contrairement aux croyances dominantes sur le phénomène, le présent travail de recherche établit que ce problème est en réalité une manifestation de pauvre performance systémique plutôt qu’une faillite opérationnelle. Alors, pour les SU, la performance organisationnelle relève une importance incontestable. En effet, l’étude de la performance organisationnelle est un sujet de recherche qui intéresse de nombreux chercheurs des services de santé. Il s’agit, néanmoins, d’un concept historiquement difficile à définir à cause de son caractère complexe, multidimensionnel et paradoxal. Le modèle EGIPSS, basé sur la théorie de l’action sociale de Parsons, est capable de saisir cette complexité et constitue un cadre conceptuel robuste et exhaustif, pouvant s’adapter à des contextes divers. Ce mémoire adopte le modèle EGIPSS pour présenter un outil global et intégré d’évaluation de la performance organisationnelle de la salle d’urgences de l’Hôpital Général Régional 46 à Guadalajara, au Mexique. Cet instrument est conçu pour prendre en compte spécifiquement les particularités propres des SU, ainsi que les caractéristiques organisationnelles uniques de l'Hôpital Général Régional 46. Enfin, le développement de ce projet de mémoire contribue aux efforts d’amélioration continue de la performance de cet établissement, et enrichit les connaissances sur les urgences en tant qu’unités organisationnelles.
Resumo:
UNE EXPOSITION NÉONATALE À L’OXYGÈNE MÈNE À DES MODIFICATIONS DE LA FONCTION MITOCHONDRIALE CHEZ LE RAT ADULTE Introduction: L’exposition à l’oxygène (O2) des ratons nouveau-nés a des conséquences à l’âge adulte dont une hypertension artérielle (HTA), une dysfonction vasculaire, une néphropénie et des indices de stress oxydant. En considérant que les reins sont encore en développement actif lors des premiers jours après la naissance chez les rats, jouent un rôle clé dans le développement de l’hypertension et qu’une dysfonction mitochondriale est associé à une augmentation du stress oxydant, nous postulons que les conditions délétères néonatales peuvent avoir un impact significatif au niveau rénal sur la modulation de l’expression de protéines clés du fonctionnement mitochondrial et une production mitochondriale excessive d’espèces réactives de l’ O2. Méthodes: Des ratons Sprague-Dawley sont exposés à 80% d’O2 (H) ou 21% O2 (Ctrl) du 3e au 10e jr de vie. En considérant que plusieurs organes des rats sont encore en développement actif à la naissance, ces rongeurs sont un modèle reconnu pour étudier les complications d’une hyperoxie néonatale, comme celles liées à une naissance prématurée chez l’homme. À 4 et à 16 semaines, les reins sont prélevés et les mitochondries sont extraites suivant une méthode d’extraction standard, avec un tampon contenant du sucrose 0.32 M et différentes centrifugations. L’expression des protéines mitochondriales a été mesurée par Western blot, tandis que la production d’ H202 et les activités des enzymes clés du cycle de Krebs ont été évaluées par spectrophotométrie. Les résultats sont exprimés par la moyenne ± SD. Résultats: Les rats mâles H de 16 semaines (n=6) présentent une activité de citrate synthase (considéré standard interne de l’expression protéique et de l’abondance mitochondriales) augmentée (12.4 ± 8.4 vs 4.1 ± 0.5 μmole/mL/min), une diminution de l’activité d’aconitase (enzyme sensible au redox mitochondrial) (0.11 ± 0.05 vs 0.20 ± 0.04 μmoles/min/mg mitochondrie), ainsi qu’une augmentation dans la production de H202 (7.0 ± 1.3 vs 5.4 ± 0.8 ρmoles/mg protéines mitochondriales) comparativement au groupe Ctrl (n=6 mâles et 4 femelles). Le groupe H (vs Ctrl) présente également une diminution dans l’expression de peroxiredoxin-3 (Prx3) (H 0.61±0.06 vs. Ctrl 0.78±0.02 unité relative, -23%; p<0.05), une protéine impliquée dans l’élimination d’ H202, de l’expression du cytochrome C oxidase (Complexe IV) (H 1.02±0.04 vs. Ctrl 1.20±0.02 unité relative, -15%; p<0.05), une protéine de la chaine de respiration mitochondriale, tandis que l’expression de la protéine de découplage (uncoupling protein)-2 (UCP2), impliquée dans la dispersion du gradient proton, est significativement augmentée (H 1.05±0.02 vs. Ctrl 0.90±0.03 unité relative, +17%; p<0.05). Les femelles H (n=6) (vs Ctrl, n=6) de 16 semaines démontrent une augmentation significative de l’activité de l’aconitase (0.33±0.03 vs 0.17±0.02 μmoles/min/mg mitochondrie), de l’expression de l’ATP synthase sous unité β (H 0.73±0.02 vs. Ctrl 0.59±0.02 unité relative, +25%; p<0.05) et de l’expression de MnSOD (H 0.89±0.02 vs. Ctrl 0.74±0.03 unité relative, +20%; p<0.05) (superoxide dismutase mitochondriale, important antioxidant), tandis que l’expression de Prx3 est significativement réduite (H 1.1±0.07 vs. Ctrl 0.85±0.01 unité relative, -24%; p<0.05). À 4 semaines, les mâles H (vs Ctrl) présentent une augmentation significative de l’expression de Prx3 (H 0.72±0.03 vs. Ctrl 0.56±0.04 unité relative, +31%; p<0.05) et les femelles présentent une augmentation significative de l’expression d’UCP2 (H 1.22±0.05 vs. Ctrl 1.03±0.04 unité relative, +18%; p<0.05) et de l’expression de MnSOD (H 1.36±0.01 vs. 1.19±0.06 unité relative, +14%; p<0.05). Conclusions: Une exposition néonatale à l’O2 chez le rat adulte mène à des indices de dysfonction mitochondriale dans les reins adultes, associée à une augmentation dans la production d’espèces réactives de l’oxygène, suggérant que ces modifications mitochondriales pourraient jouer un rôle dans l’hypertension artérielle et d’un stress oxydant, et par conséquent, être un facteur possible dans la progression vers des maladies cardiovasculaires. Mots-clés: Mitochondries, Reins, Hypertension, Oxygène, Stress Oxydant, Programmation
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Nous étudions la gestion de centres d'appels multi-compétences, ayant plusieurs types d'appels et groupes d'agents. Un centre d'appels est un système de files d'attente très complexe, où il faut généralement utiliser un simulateur pour évaluer ses performances. Tout d'abord, nous développons un simulateur de centres d'appels basé sur la simulation d'une chaîne de Markov en temps continu (CMTC), qui est plus rapide que la simulation conventionnelle par événements discrets. À l'aide d'une méthode d'uniformisation de la CMTC, le simulateur simule la chaîne de Markov en temps discret imbriquée de la CMTC. Nous proposons des stratégies pour utiliser efficacement ce simulateur dans l'optimisation de l'affectation des agents. En particulier, nous étudions l'utilisation des variables aléatoires communes. Deuxièmement, nous optimisons les horaires des agents sur plusieurs périodes en proposant un algorithme basé sur des coupes de sous-gradients et la simulation. Ce problème est généralement trop grand pour être optimisé par la programmation en nombres entiers. Alors, nous relaxons l'intégralité des variables et nous proposons des méthodes pour arrondir les solutions. Nous présentons une recherche locale pour améliorer la solution finale. Ensuite, nous étudions l'optimisation du routage des appels aux agents. Nous proposons une nouvelle politique de routage basé sur des poids, les temps d'attente des appels, et les temps d'inoccupation des agents ou le nombre d'agents libres. Nous développons un algorithme génétique modifié pour optimiser les paramètres de routage. Au lieu d'effectuer des mutations ou des croisements, cet algorithme optimise les paramètres des lois de probabilité qui génèrent la population de solutions. Par la suite, nous développons un algorithme d'affectation des agents basé sur l'agrégation, la théorie des files d'attente et la probabilité de délai. Cet algorithme heuristique est rapide, car il n'emploie pas la simulation. La contrainte sur le niveau de service est convertie en une contrainte sur la probabilité de délai. Par après, nous proposons une variante d'un modèle de CMTC basé sur le temps d'attente du client à la tête de la file. Et finalement, nous présentons une extension d'un algorithme de coupe pour l'optimisation stochastique avec recours de l'affectation des agents dans un centre d'appels multi-compétences.
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.