2 resultados para conditional random field

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.