8 resultados para computer-aided detection
em Université de Montréal, Canada
Resumo:
La maladie des artères périphériques (MAP) se manifeste par une réduction (sténose) de la lumière de l’artère des membres inférieurs. Elle est causée par l’athérosclérose, une accumulation de cellules spumeuses, de graisse, de calcium et de débris cellulaires dans la paroi artérielle, généralement dans les bifurcations et les ramifications. Par ailleurs, la MAP peut être causée par d`autres facteurs associés comme l’inflammation, une malformation anatomique et dans de rares cas, au niveau des artères iliaques et fémorales, par la dysplasie fibromusculaire. L’imagerie ultrasonore est le premier moyen de diagnostic de la MAP. La littérature clinique rapporte qu’au niveau de l’artère fémorale, l’écho-Doppler montre une sensibilité de 80 à 98 % et une spécificité de 89 à 99 % à détecter une sténose supérieure à 50 %. Cependant, l’écho-Doppler ne permet pas une cartographie de l’ensemble des artères des membres inférieurs. D’autre part, la reconstruction 3D à partir des images échographiques 2D des artères atteintes de la MAP est fortement opérateur dépendant à cause de la grande variabilité des mesures pendant l’examen par les cliniciens. Pour planifier une intervention chirurgicale, les cliniciens utilisent la tomodensitométrie (CTA), l’angiographie par résonance magnétique (MRA) et l’angiographie par soustraction numérique (DSA). Il est vrai que ces modalités sont très performantes. La CTA montre une grande précision dans la détection et l’évaluation des sténoses supérieures à 50 % avec une sensibilité de 92 à 97 % et une spécificité entre 93 et 97 %. Par contre, elle est ionisante (rayon x) et invasive à cause du produit de contraste, qui peut causer des néphropathies. La MRA avec injection de contraste (CE MRA) est maintenant la plus utilisée. Elle offre une sensibilité de 92 à 99.5 % et une spécificité entre 64 et 99 %. Cependant, elle sous-estime les sténoses et peut aussi causer une néphropathie dans de rares cas. De plus les patients avec stents, implants métalliques ou bien claustrophobes sont exclus de ce type d`examen. La DSA est très performante mais s`avère invasive et ionisante. Aujourd’hui, l’imagerie ultrasonore (3D US) s’est généralisée surtout en obstétrique et échocardiographie. En angiographie il est possible de calculer le volume de la plaque grâce à l’imagerie ultrasonore 3D, ce qui permet un suivi de l’évolution de la plaque athéromateuse au niveau des vaisseaux. L’imagerie intravasculaire ultrasonore (IVUS) est une technique qui mesure ce volume. Cependant, elle est invasive, dispendieuse et risquée. Des études in vivo ont montré qu’avec l’imagerie 3D-US on est capable de quantifier la plaque au niveau de la carotide et de caractériser la géométrie 3D de l'anastomose dans les artères périphériques. Par contre, ces systèmes ne fonctionnent que sur de courtes distances. Par conséquent, ils ne sont pas adaptés pour l’examen de l’artère fémorale, à cause de sa longueur et de sa forme tortueuse. L’intérêt pour la robotique médicale date des années 70. Depuis, plusieurs robots médicaux ont été proposés pour la chirurgie, la thérapie et le diagnostic. Dans le cas du diagnostic artériel, seuls deux prototypes sont proposés, mais non commercialisés. Hippocrate est le premier robot de type maitre/esclave conçu pour des examens des petits segments d’artères (carotide). Il est composé d’un bras à 6 degrés de liberté (ddl) suspendu au-dessus du patient sur un socle rigide. À partir de ce prototype, un contrôleur automatisant les déplacements du robot par rétroaction des images échographiques a été conçu et testé sur des fantômes. Le deuxième est le robot de la Colombie Britannique conçu pour les examens à distance de la carotide. Le mouvement de la sonde est asservi par rétroaction des images US. Les travaux publiés avec les deux robots se limitent à la carotide. Afin d’examiner un long segment d’artère, un système robotique US a été conçu dans notre laboratoire. Le système possède deux modes de fonctionnement, le mode teach/replay (voir annexe 3) et le mode commande libre par l’utilisateur. Dans ce dernier mode, l’utilisateur peut implémenter des programmes personnalisés comme ceux utilisés dans ce projet afin de contrôler les mouvements du robot. Le but de ce projet est de démontrer les performances de ce système robotique dans des conditions proches au contexte clinique avec le mode commande libre par l’utilisateur. Deux objectifs étaient visés: (1) évaluer in vitro le suivi automatique et la reconstruction 3D en temps réel d’une artère en utilisant trois fantômes ayant des géométries réalistes. (2) évaluer in vivo la capacité de ce système d'imagerie robotique pour la cartographie 3D en temps réel d'une artère fémorale normale. Pour le premier objectif, la reconstruction 3D US a été comparée avec les fichiers CAD (computer-aided-design) des fantômes. De plus, pour le troisième fantôme, la reconstruction 3D US a été comparée avec sa reconstruction CTA, considéré comme examen de référence pour évaluer la MAP. Cinq chapitres composent ce mémoire. Dans le premier chapitre, la MAP sera expliquée, puis dans les deuxième et troisième chapitres, l’imagerie 3D ultrasonore et la robotique médicale seront développées. Le quatrième chapitre sera consacré à la présentation d’un article intitulé " A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of B-mode images" qui résume les résultats obtenus dans ce projet de maîtrise. Une discussion générale conclura ce mémoire. L’article intitulé " A 3D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility " de Marie-Ange Janvier et al dans l’annexe 3, permettra également au lecteur de mieux comprendre notre système robotisé. Ma contribution dans cet article était l’acquisition des images mode B, la reconstruction 3D et l’analyse des résultats pour le patient sain.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
Le succès écologique des organismes dépend principalement de leur phénotype. Une composante important du phénotype est la morphologie fonctionnelle car elle influence la performance d’un organisme donné dans un milieu donné et donc reflète son écologie. Des disparités dans la morphologie fonctionnelle ou dans le développement entre espèces peuvent donc mener à des différences écologiques. Ce projet évalue le rôle des mécanismes de variation morphologique dans la production de différences écologiques entre espèces au sein des poissons hybrides du complexe Chrosomus eos-neogaeus. En utilisant la microtomodensitométrie à rayons X et la morphométrie géométrique 3D, la forme des éléments des mâchoires est décrite pour comparer la variation morphologique et les différences développementales entre les membres du complexe C. eos neogaeus. Les hybrides présentent autant de variation phénotypique que les espèces parentales et présentent des phénotypes nouveaux, dit transgressifs. Les hybrides présentent aussi des différences marquées avec les espèces parentales dans leur allométrie et dans leur intégration phénotypique. Finalement, ceux-ci semblent être plastiques et en mesure de modifier leur phénotype pour occuper plusieurs environnements. L’entièreté de ces résultats suggère que des changements dans le développement des hybrides entraînent une différenciation phénotypique et écologique avec les espèces parentales.
Resumo:
Les changements sont faits de façon continue dans le code source des logiciels pour prendre en compte les besoins des clients et corriger les fautes. Les changements continus peuvent conduire aux défauts de code et de conception. Les défauts de conception sont des mauvaises solutions à des problèmes récurrents de conception ou d’implémentation, généralement dans le développement orienté objet. Au cours des activités de compréhension et de changement et en raison du temps d’accès au marché, du manque de compréhension, et de leur expérience, les développeurs ne peuvent pas toujours suivre les normes de conception et les techniques de codage comme les patrons de conception. Par conséquent, ils introduisent des défauts de conception dans leurs systèmes. Dans la littérature, plusieurs auteurs ont fait valoir que les défauts de conception rendent les systèmes orientés objet plus difficile à comprendre, plus sujets aux fautes, et plus difficiles à changer que les systèmes sans les défauts de conception. Pourtant, seulement quelques-uns de ces auteurs ont fait une étude empirique sur l’impact des défauts de conception sur la compréhension et aucun d’entre eux n’a étudié l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes. Dans cette thèse, nous proposons trois principales contributions. La première contribution est une étude empirique pour apporter des preuves de l’impact des défauts de conception sur la compréhension et le changement. Nous concevons et effectuons deux expériences avec 59 sujets, afin d’évaluer l’impact de la composition de deux occurrences de Blob ou deux occurrences de spaghetti code sur la performance des développeurs effectuant des tâches de compréhension et de changement. Nous mesurons la performance des développeurs en utilisant: (1) l’indice de charge de travail de la NASA pour leurs efforts, (2) le temps qu’ils ont passé dans l’accomplissement de leurs tâches, et (3) les pourcentages de bonnes réponses. Les résultats des deux expériences ont montré que deux occurrences de Blob ou de spaghetti code sont un obstacle significatif pour la performance des développeurs lors de tâches de compréhension et de changement. Les résultats obtenus justifient les recherches antérieures sur la spécification et la détection des défauts de conception. Les équipes de développement de logiciels doivent mettre en garde les développeurs contre le nombre élevé d’occurrences de défauts de conception et recommander des refactorisations à chaque étape du processus de développement pour supprimer ces défauts de conception quand c’est possible. Dans la deuxième contribution, nous étudions la relation entre les défauts de conception et les fautes. Nous étudions l’impact de la présence des défauts de conception sur l’effort nécessaire pour corriger les fautes. Nous mesurons l’effort pour corriger les fautes à l’aide de trois indicateurs: (1) la durée de la période de correction, (2) le nombre de champs et méthodes touchés par la correction des fautes et (3) l’entropie des corrections de fautes dans le code-source. Nous menons une étude empirique avec 12 défauts de conception détectés dans 54 versions de quatre systèmes: ArgoUML, Eclipse, Mylyn, et Rhino. Nos résultats ont montré que la durée de la période de correction est plus longue pour les fautes impliquant des classes avec des défauts de conception. En outre, la correction des fautes dans les classes avec des défauts de conception fait changer plus de fichiers, plus les champs et des méthodes. Nous avons également observé que, après la correction d’une faute, le nombre d’occurrences de défauts de conception dans les classes impliquées dans la correction de la faute diminue. Comprendre l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes est important afin d’aider les équipes de développement pour mieux évaluer et prévoir l’impact de leurs décisions de conception et donc canaliser leurs efforts pour améliorer la qualité de leurs systèmes. Les équipes de développement doivent contrôler et supprimer les défauts de conception de leurs systèmes car ils sont susceptibles d’augmenter les efforts de changement. La troisième contribution concerne la détection des défauts de conception. Pendant les activités de maintenance, il est important de disposer d’un outil capable de détecter les défauts de conception de façon incrémentale et itérative. Ce processus de détection incrémentale et itérative pourrait réduire les coûts, les efforts et les ressources en permettant aux praticiens d’identifier et de prendre en compte les occurrences de défauts de conception comme ils les trouvent lors de la compréhension et des changements. Les chercheurs ont proposé des approches pour détecter les occurrences de défauts de conception, mais ces approches ont actuellement quatre limites: (1) elles nécessitent une connaissance approfondie des défauts de conception, (2) elles ont une précision et un rappel limités, (3) elles ne sont pas itératives et incrémentales et (4) elles ne peuvent pas être appliquées sur des sous-ensembles de systèmes. Pour surmonter ces limitations, nous introduisons SMURF, une nouvelle approche pour détecter les défauts de conception, basé sur une technique d’apprentissage automatique — machines à vecteur de support — et prenant en compte les retours des praticiens. Grâce à une étude empirique portant sur trois systèmes et quatre défauts de conception, nous avons montré que la précision et le rappel de SMURF sont supérieurs à ceux de DETEX et BDTEX lors de la détection des occurrences de défauts de conception. Nous avons également montré que SMURF peut être appliqué à la fois dans les configurations intra-système et inter-système. Enfin, nous avons montré que la précision et le rappel de SMURF sont améliorés quand on prend en compte les retours des praticiens.
Resumo:
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.
Resumo:
Le mouvement de la marche est un processus essentiel de l'activité humaine et aussi le résultat de nombreuses interactions collaboratives entre les systèmes neurologiques, articulaires et musculo-squelettiques fonctionnant ensemble efficacement. Ceci explique pourquoi une analyse de la marche est aujourd'hui de plus en plus utilisée pour le diagnostic (et aussi la prévention) de différents types de maladies (neurologiques, musculaires, orthopédique, etc.). Ce rapport présente une nouvelle méthode pour visualiser rapidement les différentes parties du corps humain liées à une possible asymétrie (temporellement invariante par translation) existant dans la démarche d'un patient pour une possible utilisation clinique quotidienne. L'objectif est de fournir une méthode à la fois facile et peu dispendieuse permettant la mesure et l'affichage visuel, d'une manière intuitive et perceptive, des différentes parties asymétriques d'une démarche. La méthode proposée repose sur l'utilisation d'un capteur de profondeur peu dispendieux (la Kinect) qui est très bien adaptée pour un diagnostique rapide effectué dans de petites salles médicales car ce capteur est d'une part facile à installer et ne nécessitant aucun marqueur. L'algorithme que nous allons présenter est basé sur le fait que la marche saine possède des propriétés de symétrie (relativement à une invariance temporelle) dans le plan coronal.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.