6 resultados para classification and regression tree
em Université de Montréal, Canada
Resumo:
Les chutes chez les personnes âgées représentent un problème majeur. Il n’est donc pas étonnant que l’identification des facteurs qui en accroissent le risque ait mobilisé autant d’attention. Les aînés plus fragiles ayant besoin de soutien pour vivre dans la communauté sont néanmoins demeurés le parent pauvre de la recherche, bien que, plus récemment, les autorités québécoises en aient fait une cible d’intervention prioritaire. Les études d’observation prospectives sont particulièrement indiquées pour étudier les facteurs de risque de chutes chez les personnes âgées. Leur identification optimale est cependant compliquée par le fait que l’exposition aux facteurs de risque peut varier au cours du suivi et qu’un même individu peut subir plus d’un événement. Il y a 20 ans, des chercheurs ont tenté de sensibiliser leurs homologues à cet égard, mais leurs efforts sont demeurés vains. On continue aujourd’hui à faire peu de cas de ces considérations, se concentrant sur la proportion des personnes ayant fait une chute ou sur le temps écoulé jusqu’à la première chute. On écarte du coup une quantité importante d’information pertinente. Dans cette thèse, nous examinons les méthodes en usage et nous proposons une extension du modèle de risques de Cox. Nous illustrons cette méthode par une étude des facteurs de risque susceptibles d’être associés à des chutes parmi un groupe de 959 personnes âgées ayant eu recours aux services publics de soutien à domicile. Nous comparons les résultats obtenus avec la méthode de Wei, Lin et Weissfeld à ceux obtenus avec d’autres méthodes, dont la régression logistique conventionnelle, la régression logistique groupée, la régression binomiale négative et la régression d’Andersen et Gill. L’investigation est caractérisée par des prises de mesures répétées des facteurs de risque au domicile des participants et par des relances téléphoniques mensuelles visant à documenter la survenue des chutes. Les facteurs d’exposition étudiés, qu’ils soient fixes ou variables dans le temps, comprennent les caractéristiques sociodémographiques, l’indice de masse corporelle, le risque nutritionnel, la consommation d’alcool, les dangers de l’environnement domiciliaire, la démarche et l’équilibre, et la consommation de médicaments. La quasi-totalité (99,6 %) des usagers présentaient au moins un facteur à haut risque. L’exposition à des risques multiples était répandue, avec une moyenne de 2,7 facteurs à haut risque distincts par participant. Les facteurs statistiquement associés au risque de chutes incluent le sexe masculin, les tranches d’âge inférieures, l’histoire de chutes antérieures, un bas score à l’échelle d’équilibre de Berg, un faible indice de masse corporelle, la consommation de médicaments de type benzodiazépine, le nombre de dangers présents au domicile et le fait de vivre dans une résidence privée pour personnes âgées. Nos résultats révèlent cependant que les méthodes courantes d’analyse des facteurs de risque de chutes – et, dans certains cas, de chutes nécessitant un recours médical – créent des biais appréciables. Les biais pour les mesures d’association considérées proviennent de la manière dont l’exposition et le résultat sont mesurés et définis de même que de la manière dont les méthodes statistiques d’analyse en tiennent compte. Une dernière partie, tout aussi innovante que distincte de par la nature des outils statistiques utilisés, complète l’ouvrage. Nous y identifions des profils d’aînés à risque de devenir des chuteurs récurrents, soit ceux chez qui au moins deux chutes sont survenues dans les six mois suivant leur évaluation initiale. Une analyse par arbre de régression et de classification couplée à une analyse de survie a révélé l’existence de cinq profils distinctifs, dont le risque relatif varie de 0,7 à 5,1. Vivre dans une résidence pour aînés, avoir des antécédents de chutes multiples ou des troubles de l’équilibre et consommer de l’alcool sont les principaux facteurs associés à une probabilité accrue de chuter précocement et de devenir un chuteur récurrent. Qu’il s’agisse d’activité de dépistage des facteurs de risque de chutes ou de la population ciblée, cette thèse s’inscrit dans une perspective de gain de connaissances sur un thème hautement d’actualité en santé publique. Nous encourageons les chercheurs intéressés par l’identification des facteurs de risque de chutes chez les personnes âgées à recourir à la méthode statistique de Wei, Lin et Weissfeld car elle tient compte des expositions variables dans le temps et des événements récurrents. Davantage de recherches seront par ailleurs nécessaires pour déterminer le choix du meilleur test de dépistage pour un facteur de risque donné chez cette clientèle.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le but de cette thèse est d’expliquer la délinquance prolifique de certains délinquants. Nous avançons la thèse que la délinquance prolifique s’explique par la formation plus fréquente de situations criminogènes. Ces situations réfèrent au moment où un délinquant entre en interaction avec une opportunité criminelle dans un contexte favorable au crime. Plus exactement, il s’agit du moment où le délinquant fait face à cette opportunité, mais où le crime n’a pas encore été commis. La formation de situations criminogènes est facilitée par l’interaction et l’interdépendance de trois éléments : la propension à la délinquance de la personne, son entourage criminalisé et son style de vie. Ainsi, la délinquance prolifique ne pourrait être expliquée adéquatement sans tenir compte de l’interaction entre le risque individuel et le risque contextuel. L’objectif général de la présente thèse est de faire la démonstration de l’importance d’une modélisation interactionnelle entre le risque individuel et le risque contextuel afin d’expliquer la délinquance plus prolifique de certains contrevenants. Pour ce faire, 155 contrevenants placés sous la responsabilité de deux établissements des Services correctionnels du Québec et de quatre centres jeunesse du Québec ont complété un protocole d’évaluation par questionnaires auto-administrés. Dans un premier temps (chapitre trois), nous avons décrit et comparé la nature de la délinquance autorévélée des contrevenants de notre échantillon. Ce premier chapitre de résultats a permis de mettre en valeur le fait que ce bassin de contrevenants est similaire à d’autres échantillons de délinquants en ce qui a trait à la nature de leur délinquance, plus particulièrement, au volume, à la variété et à la gravité de leurs crimes. En effet, la majorité des participants rapportent un volume faible de crimes contre la personne et contre les biens alors qu’un petit groupe se démarque par un lambda très élevé (13,1 % des délinquants de l’échantillon sont responsables de 60,3% de tous les crimes rapportés). Environ quatre délinquants sur cinq rapportent avoir commis au moins un crime contre la personne et un crime contre les biens. De plus, plus de 50% de ces derniers rapportent dans au moins quatre sous-catégories. Finalement, bien que les délinquants de notre échantillon aient un IGC (indice de gravité de la criminalité) moyen relativement faible (médiane = 77), près de 40% des contrevenants rapportent avoir commis au moins un des deux crimes les plus graves recensés dans cette étude (décharger une arme et vol qualifié). Le second objectif spécifique était d’explorer, au chapitre quatre, l’interaction entre les caractéristiques personnelles, l’entourage et le style de vie des délinquants dans la formation de situations criminogènes. Les personnes ayant une propension à la délinquance plus élevée semblent avoir tendance à être davantage entourées de personnes criminalisées et à avoir un style de vie plus oisif. L’entourage criminalisé semble également influencer le style de vie de ces délinquants. Ainsi, l’interdépendance entre ces trois éléments facilite la formation plus fréquente de situations criminogènes et crée une conjoncture propice à l’émergence de la délinquance prolifique. Le dernier objectif spécifique de la thèse, qui a été couvert dans le chapitre cinq, était d’analyser l’impact de la formation de situations criminogènes sur la nature de la délinquance. Les analyses de régression linéaires multiples et les arbres de régression ont permis de souligner la contribution des caractéristiques personnelles, de l’entourage et du style de vie dans l’explication de la nature de la délinquance. D’un côté, les analyses de régression (modèles additifs) suggèrent que l’ensemble des éléments favorisant la formation de situations criminogènes apporte une contribution unique à l’explication de la délinquance. D’un autre côté, les arbres de régression nous ont permis de mieux comprendre l’interaction entre les éléments dans l’explication de la délinquance prolifique. En effet, un positionnement plus faible sur certains éléments peut être compensé par un positionnement plus élevé sur d’autres. De plus, l’accumulation d’éléments favorisant la formation de situations criminogènes ne se fait pas de façon linéaire. Ces conclusions sont appuyées sur des proportions de variance expliquée plus élevées que celles des régressions linéaires multiples. En conclusion, mettre l’accent que sur un seul élément (la personne et sa propension à la délinquance ou le contexte et ses opportunités) ou leur combinaison de façon simplement additive ne permet pas de rendre justice à la complexité de l’émergence de la délinquance prolifique. En mettant à l’épreuve empiriquement cette idée généralement admise, cette thèse permet donc de souligner l’importance de considérer l’interaction entre le risque individuel et le risque contextuel dans l’explication de la délinquance prolifique.
Resumo:
Affiliation: Département de Biochimie, Université de Montréal
Resumo:
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.