3 resultados para choice test
em Université de Montréal, Canada
Resumo:
Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance.
Resumo:
Ce mémoire rapporte l’optimisation et l’évaluation d’une nouvelle version du test PAMPA (Parallel Artificial Membrane Permeability Assay) appelée Néo-PAMPA. Ce test qui permet la prédiction de l’absorption intestinale de médicaments consiste en l’utilisation d’une membrane modèle de la paroi intestinale composée d’une bicouche lipidique déposée sur un coussin de polydopamine recouvrant un filtre poreux. En effet, nous nous sommes intéressés lors de ce projet à la mise en place d’une membrane artificielle qui serait plus représentative de la paroi intestinale humaine. Nous avons pu déterminer, suite à une étude comparative des propriétés de huit médicaments ainsi que les coefficients de perméabilité obtenus, que les filtres en polycarbonate présentaient le meilleur choix de support solide pour la membrane. Nous avons également vérifié la déposition du coussin de polydopamine qui apporte le caractère fluide à la bicouche lipidique. Les résultats des tests de perméabilité ont démontré que le coussin de polymère n’obstrue pas les pores du filtre après un dépôt de 4h. Nous avons par la suite étudié la déposition de la bicouche lipidique sur le filtre recouvert de polydopamine. Pour ce faire, deux méthodes de préparation de liposomes ainsi que plusieurs tailles de liposomes ont été testées. Aussi, la composition en phospholipides a été sujette à plusieurs changements. Tous ces travaux d’optimisation ont permis d’aboutir à des liposomes préparés selon la méthode du « film lipidique » à partir d’un mélange de dioléoylphosphatidylcholine (DOPC) et de cholestérol. Une dernière étape d’optimisation de la déposition de la bicouche reste à améliorer. Enfin, le test standard Caco-2, qui consiste à évaluer la perméabilité des médicaments à travers une monocouche de cellules cancéreuses du colon humain, a été implémenté avec succès dans le but de comparer des données de perméabilité avec un test de référence.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.