5 resultados para calcium release
em Université de Montréal, Canada
Resumo:
Chez diverses espèces animales, les informations sensorielles peuvent déclencher la locomotion. Ceci nécessite l’intégration des informations sensorielles par le système nerveux central. Chez la lamproie, les réseaux locomoteurs spinaux sont activés et contrôlés par les cellules réticulospinales (RS), système descendant le plus important. Ces cellules reçoivent des informations variées provenant notamment de la périphérie. Une fois activées par une brève stimulation cutanée d’intensité suffisante, les cellules RS produisent des dépolarisations soutenues de durées variées impliquant des propriétés intrinsèques calcium-dépendantes et associées à l’induction de la nage de fuite. Au cours de ce doctorat, nous avons voulu savoir si les afférences synaptiques ont une influence sur la durée des dépolarisations soutenues et si l’ensemble des cellules RS partagent des propriétés d’intégration similaires, impliquant possiblement les réserves de calcium internes. Dans un premier temps, nous montrons pour la première fois qu’en plus de dépendre des propriétés intrinsèques des cellules réticulospinales, les dépolarisations soutenues dépendent des afférences excitatrices glutamatergiques, incluant les afférences spinales, pour perdurer pendant de longues périodes de temps. Les afférences cutanées ne participent pas au maintien des dépolarisations soutenues et les afférences inhibitrices glycinergique et GABAergiques ne sont pas suffisantes pour les arrêter. Dans un deuxième temps, nous montrons que suite à une stimulation cutanée, l’ensemble des cellules RS localisées dans les quatre noyaux réticulés possèdent un patron d’activation similaire et elles peuvent toutes produire des dépolarisations soutenues dont le maintien ne dépend pas des réserves de calcium internes. Enfin, les résultats obtenus durant ce doctorat ont permis de mieux comprendre les mécanismes cellulaires par lesquels l’ensemble des cellules RS intègrent une brève information sensorielle et la transforment en une réponse soutenue associée à une commande motrice.
Resumo:
Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease.
Resumo:
The HIV-1 accessory protein Vpu enhances virus particle release by counteracting a host factor that retains virions at the cell surface of infected cells. It was recently demonstrated that cellular protein BST2/CD317/Tetherin restricts HIV-1 release in a Vpu-dependent manner. CAML was also proposed to be involved in this process. We investigated whether CAML is involved in Tetherin cell-surface expression. Here, we show that CAML over-expression in permissive Cos-7 cells or CAML depletion in restrictive HeLa cells has no effect on HIV-1 release nor on Tetherin surface expression, indicating that CAML is not required for Tetherin-mediated restriction of HIV-1 release.
Resumo:
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.
Resumo:
Le Costimulateur Inductible (ICOS) est un récepteur exprimé à la surface des cellules T CD4 auxiliaires et T CD8 cytotoxiques. Il fut démontré à l’aide de modèles murins de transplantation de moelle osseuse que ICOS joue un rôle important dans l’induction de la maladie du greffon contre l’hôte aigüe (GVHD). ICOS potentialise deux signaux médiés par le récepteur de cellules T (TCR) : l’activation de la phosphoinositide 3-kinase (PI3K) ainsi que la mobilisation interne de calcium. En conditions in vitro, dans les cellules CD4 et CD8, ICOS réussi à potentialiser le flux de calcium médié par le TCR indépendamment de PI3K. La voie de signalisation de ICOS impliquée dans la GVHD demeure inconnue. Cependant, en utilisant une lignée de souris ‘knock-in’ nommée ICOS-Y181F, dans laquelle le cellules T ont sélectivement perdu la capacité d’activer PI3K par l’entremise d’ICOS, nous avons démontré que les cellules T peuvent utiliser un mécanisme ICOS indépendant de PI3K afin d’induire la GVHD. La mobilisation interne du Ca2+ mène à l’activation de NFAT, un facteur de transcription clé régulant des gènes comme IFN-γ, qui exprime une des cytokines clés impliquées dans la GVHD. Nous émettons comme hypothèse que la capacité pathogénique intacte des cellules T ICOSY181F à induire la GVHD, repose sur la signalisation du Ca2+ indépendante de PI3K. Le but de mon projet est d’identifier les résidus responsables de cette signalisation de Ca2+ médiée par ICOS ainsi que le mécanisme par lequel ce récepteur fonctionne. À l’aide de la mutagénèse dirigée, j’ai généré des mutants d’ICOS et j’ai analysé par cytométrie en flux leur capacité à activer le flux de Ca2+. J’ai ainsi identifié un groupe de lysine sur la queue cytoplasmique d’ICOS situé à proximité de la membrane comme étant essentiel à la fonction de potentialisation du flux de Ca2+. Je fournis également des preuves de l’implication de la kinase Lck, membre de la famille de kinases Src, dans la voie de signalisation de ICOS médiant la potentialisation du flux de Ca2+. Ainsi, ICOS s’associe à Lck et mène à une augmentation de l’activation de PLCγ1, la protéine effectrice clé causant la sortie de Ca2+ de la réserve intracellulaire. En conclusion, notre étude permet de comprendre davantage une des voies de signalisation d’ICOS. L’influx de Ca2+ dans les cellules T implique la voie ICOS-Lck-PLCγ1. Une compréhension plus approfondie de cette voie de signalisation pourrait s’avérer bénéfique afin d’élaborer de nouvelles stratégies menant à la prévention de maladies reliées à ICOS, comme la GVHD.