8 resultados para box constraints
em Université de Montréal, Canada
Resumo:
Rapport de recherche
Resumo:
Static oligopoly analysis predicts that if a single firm in Cournot equilibrium were to be constrained to contract its production marginally, its profits would fall. on the other hand, if all the firms were simultaneously constrained to reduce their productino, thus moving the industry towards monopoly output, each firm's profit would rise. We show that these very intuitive results may not hold in a dynamic oligopoly.
Resumo:
Controlled choice over public schools attempts giving options to parents while maintaining diversity, often enforced by setting feasibility constraints with hard upper and lower bounds for each student type. We demonstrate that there might not exist assignments that satisfy standard fairness and non-wastefulness properties; whereas constrained non-wasteful assignments which are fair for same type students always exist. We introduce a "controlled" version of the deferred acceptance algorithm with an improvement stage (CDAAI) that finds a Pareto optimal assignment among such assignments. To achieve fair (across all types) and non-wasteful assignments, we propose the control constraints to be interpreted as soft bounds-flexible limits that regulate school priorities. In this setting, a modified version of the deferred acceptance algorithm (DAASB) finds an assignment that is Pareto optimal among fair assignments while eliciting true preferences. CDAAI and DAASB provide two alternative practical solutions depending on the interpretation of the control constraints. JEL C78, D61, D78, I20.
Resumo:
Les centres d’appels sont des éléments clés de presque n’importe quelle grande organisation. Le problème de gestion du travail a reçu beaucoup d’attention dans la littérature. Une formulation typique se base sur des mesures de performance sur un horizon infini, et le problème d’affectation d’agents est habituellement résolu en combinant des méthodes d’optimisation et de simulation. Dans cette thèse, nous considérons un problème d’affection d’agents pour des centres d’appels soumis a des contraintes en probabilité. Nous introduisons une formulation qui exige que les contraintes de qualité de service (QoS) soient satisfaites avec une forte probabilité, et définissons une approximation de ce problème par moyenne échantillonnale dans un cadre de compétences multiples. Nous établissons la convergence de la solution du problème approximatif vers celle du problème initial quand la taille de l’échantillon croit. Pour le cas particulier où tous les agents ont toutes les compétences (un seul groupe d’agents), nous concevons trois méthodes d’optimisation basées sur la simulation pour le problème de moyenne échantillonnale. Étant donné un niveau initial de personnel, nous augmentons le nombre d’agents pour les périodes où les contraintes sont violées, et nous diminuons le nombre d’agents pour les périodes telles que les contraintes soient toujours satisfaites après cette réduction. Des expériences numériques sont menées sur plusieurs modèles de centre d’appels à faible occupation, au cours desquelles les algorithmes donnent de bonnes solutions, i.e. la plupart des contraintes en probabilité sont satisfaites, et nous ne pouvons pas réduire le personnel dans une période donnée sont introduire de violation de contraintes. Un avantage de ces algorithmes, par rapport à d’autres méthodes, est la facilité d’implémentation.