3 resultados para big data

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de ce mémoire est d’examiner les nombreuses associations qui existent entre les conditions de l’organisation du travail, les traits de personnalité et la détresse psychologique au travail. La question de recherche principale était : est-ce que les cinq grands traits de personnalité (Big Five personality traits) ont un effet modérateur sur la relation entre les conditions de l’organisation du travail et la détresse psychologique. De nombreuses autres questions ont aussi été considérées. Pour répondre aux vingt-et-une hypothèses proposées dans cette recherche, nous avons utilisé des données secondaires d’une étude transversale de 395 employés d’un service de police municipal. À la suite d’analyses multivariées, nous avons pu observer quatre associations significatives. Concernant les conditions de l’organisation du travail, nous avons trouvé que les demandes psychologiques en milieu de travail augment la détresse psychologique, tandis que le support d’un superviseur la diminue. En ce qui concerne, les traits de personnalité, nous avons trouvé qu’être névrotique (neuroticism) augmente la détresse psychologique. Finalement, nous avons trouvé un effet modérateur du trait de personnalité, être consciencieux (conscientiousness), sur la relation entre les demandes psychologiques et la détresse psychologique. Bref, nos résultats nous indiquent que les cinq grands traits de personnalité (Big Five personality traits) ont une influence mitigée sur la santé mentale en milieu de travail.