1 resultado para base de datos

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la actualidad, el uso de las tecnologías ha sido primordial para el avance de las sociedades, estas han permitido que personas sin conocimientos informáticos o usuarios llamados “no expertos” se interesen en su uso, razón por la cual los investigadores científicos se han visto en la necesidad de producir estudios que permitan la adaptación de sistemas, a la problemática existente dentro del ámbito informático. Una necesidad recurrente de todo usuario de un sistema es la gestión de la información, la cual se puede administrar por medio de una base de datos y lenguaje específico, como lo es el SQL (Structured Query Language), pero esto obliga al usuario sin conocimientos a acudir a un especialista para su diseño y construcción, lo cual se ve reflejado en costos y métodos complejos, entonces se plantea una pregunta ¿qué hacer cuando los proyectos son pequeñas y los recursos y procesos son limitados? Teniendo como base la investigación realizada por la universidad de Washington[39], donde sintetizan sentencias SQL a partir de ejemplos de entrada y salida, se pretende con esta memoria automatizar el proceso y aplicar una técnica diferente de aprendizaje, para lo cual utiliza una aproximación evolucionista, donde la aplicación de un algoritmo genético adaptado origina sentencias SQL válidas que responden a las condiciones establecidas por los ejemplos de entrada y salida dados por el usuario. Se obtuvo como resultado de la aproximación, una herramienta denominada EvoSQL que fue validada en este estudio. Sobre los 28 ejercicios empleados por la investigación [39], 23 de los cuales se obtuvieron resultados perfectos y 5 ejercicios sin éxito, esto representa un 82.1% de efectividad. Esta efectividad es superior en un 10.7% al establecido por la herramienta desarrollada en [39] SQLSynthesizer y 75% más alto que la herramienta siguiente más próxima Query by Output QBO[31]. El promedio obtenido en la ejecución de cada ejercicio fue de 3 minutos y 11 segundos, este tiempo es superior al establecido por SQLSynthesizer; sin embargo, en la medida un algoritmo genético supone la existencia de fases que amplían los rangos de tiempos, por lo cual el tiempo obtenido es aceptable con relación a las aplicaciones de este tipo. En conclusión y según lo anteriormente expuesto, se obtuvo una herramienta automática con una aproximación evolucionista, con buenos resultados y un proceso simple para el usuario “no experto”.