3 resultados para adaptive learning

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La thèse comporte trois essais en microéconomie appliquée. En utilisant des modèles d’apprentissage (learning) et d’externalité de réseau, elle étudie le comportement des agents économiques dans différentes situations. Le premier essai de la thèse se penche sur la question de l’utilisation des ressources naturelles en situation d’incertitude et d’apprentissage (learning). Plusieurs auteurs ont abordé le sujet, mais ici, nous étudions un modèle d’apprentissage dans lequel les agents qui consomment la ressource ne formulent pas les mêmes croyances a priori. Le deuxième essai aborde le problème générique auquel fait face, par exemple, un fonds de recherche désirant choisir les meilleurs parmi plusieurs chercheurs de différentes générations et de différentes expériences. Le troisième essai étudie un modèle particulier d’organisation d’entreprise dénommé le marketing multiniveau (multi-level marketing). Le premier chapitre est intitulé "Renewable Resource Consumption in a Learning Environment with Heterogeneous beliefs". Nous y avons utilisé un modèle d’apprentissage avec croyances hétérogènes pour étudier l’exploitation d’une ressource naturelle en situation d’incertitude. Il faut distinguer ici deux types d’apprentissage : le adaptive learning et le learning proprement dit. Ces deux termes ont été empruntés à Koulovatianos et al (2009). Nous avons montré que, en comparaison avec le adaptive learning, le learning a un impact négatif sur la consommation totale par tous les exploitants de la ressource. Mais individuellement certains exploitants peuvent consommer plus la ressource en learning qu’en adaptive learning. En effet, en learning, les consommateurs font face à deux types d’incitations à ne pas consommer la ressource (et donc à investir) : l’incitation propre qui a toujours un effet négatif sur la consommation de la ressource et l’incitation hétérogène dont l’effet peut être positif ou négatif. L’effet global du learning sur la consommation individuelle dépend donc du signe et de l’ampleur de l’incitation hétérogène. Par ailleurs, en utilisant les variations absolues et relatives de la consommation suite à un changement des croyances, il ressort que les exploitants ont tendance à converger vers une décision commune. Le second chapitre est intitulé "A Perpetual Search for Talent across Overlapping Generations". Avec un modèle dynamique à générations imbriquées, nous avons étudié iv comment un Fonds de recherche devra procéder pour sélectionner les meilleurs chercheurs à financer. Les chercheurs n’ont pas la même "ancienneté" dans l’activité de recherche. Pour une décision optimale, le Fonds de recherche doit se baser à la fois sur l’ancienneté et les travaux passés des chercheurs ayant soumis une demande de subvention de recherche. Il doit être plus favorable aux jeunes chercheurs quant aux exigences à satisfaire pour être financé. Ce travail est également une contribution à l’analyse des Bandit Problems. Ici, au lieu de tenter de calculer un indice, nous proposons de classer et d’éliminer progressivement les chercheurs en les comparant deux à deux. Le troisième chapitre est intitulé "Paradox about the Multi-Level Marketing (MLM)". Depuis quelques décennies, on rencontre de plus en plus une forme particulière d’entreprises dans lesquelles le produit est commercialisé par le biais de distributeurs. Chaque distributeur peut vendre le produit et/ou recruter d’autres distributeurs pour l’entreprise. Il réalise des profits sur ses propres ventes et reçoit aussi des commissions sur la vente des distributeurs qu’il aura recrutés. Il s’agit du marketing multi-niveau (multi-level marketing, MLM). La structure de ces types d’entreprise est souvent qualifiée par certaines critiques de système pyramidal, d’escroquerie et donc insoutenable. Mais les promoteurs des marketing multi-niveau rejettent ces allégations en avançant que le but des MLMs est de vendre et non de recruter. Les gains et les règles de jeu sont tels que les distributeurs ont plus incitation à vendre le produit qu’à recruter. Toutefois, si cette argumentation des promoteurs de MLMs est valide, un paradoxe apparaît. Pourquoi un distributeur qui désire vraiment vendre le produit et réaliser un gain recruterait-il d’autres individus qui viendront opérer sur le même marché que lui? Comment comprendre le fait qu’un agent puisse recruter des personnes qui pourraient devenir ses concurrents, alors qu’il est déjà établi que tout entrepreneur évite et même combat la concurrence. C’est à ce type de question que s’intéresse ce chapitre. Pour expliquer ce paradoxe, nous avons utilisé la structure intrinsèque des organisations MLM. En réalité, pour être capable de bien vendre, le distributeur devra recruter. Les commissions perçues avec le recrutement donnent un pouvoir de vente en ce sens qu’elles permettent au recruteur d’être capable de proposer un prix compétitif pour le produit qu’il désire vendre. Par ailleurs, les MLMs ont une structure semblable à celle des multi-sided markets au sens de Rochet et Tirole (2003, 2006) et Weyl (2010). Le recrutement a un effet externe sur la vente et la vente a un effet externe sur le recrutement, et tout cela est géré par le promoteur de l’organisation. Ainsi, si le promoteur ne tient pas compte de ces externalités dans la fixation des différentes commissions, les agents peuvent se tourner plus ou moins vers le recrutement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.