1 resultado para acquisition of data system
em Université de Montréal, Canada
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (46)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (26)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (71)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (26)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (4)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Institute of Public Health in Ireland, Ireland (4)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (10)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (70)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (21)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (20)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (12)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (38)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (137)
- University of Queensland eSpace - Australia (55)
- University of Southampton, United Kingdom (3)
- University of Washington (1)
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.