36 resultados para Visual-cortex

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le regroupement des neurones de propriétés similaires est à l’origine de modules permettant d’optimiser l’analyse de l’information. La conséquence est la présence de cartes fonctionnelles dans le cortex visuel primaire de certains mammifères pour de nombreux paramètres tels que l’orientation, la direction du mouvement ou la position des stimuli (visuotopie). Le premier volet de cette thèse est consacré à caractériser l’organisation modulaire dans le cortex visuel primaire pour un paramètre fondamental, la suppression centre / pourtour et au delà du cortex visuel primaire (dans l’aire 21a), pour l’orientation et la direction. Toutes les études ont été effectuées à l’aide de l’imagerie optique des signaux intrinsèques sur le cortex visuel du chat anesthésié. La quantification de la modulation par la taille des stimuli à permis de révéler la présence de modules de forte et de faible suppression par le pourtour dans le cortex visuel primaire (aires 17 et 18). Ce type d’organisation n’avait été observé jusqu’ici que dans une aire de plus haut niveau hiérarchique chez le primate. Une organisation modulaire pour l’orientation, similaire à celle observée dans le cortex visuel primaire a été révélée dans l’aire 21a. Par contre, contrairement à l’aire 18, l’aire 21a ne semblait pas être organisée en domaine de direction. L’ensemble de ces résultats pourront permettre d’alimenter les connaissances sur l’organisation anatomo-fonctionnelle du cortex visuel du chat mais également de mieux comprendre les facteurs qui déterminent la présence d’une organisation modulaire. Le deuxième volet abordé dans cette thèse s’est intéressé à l’amélioration de l’aspect quantitatif apporté par l’analyse temporelle en imagerie optique des signaux intrinsèques. Cette nouvelle approche, basée sur l’analyse de Fourier a permis d’augmenter considérablement le rapport signal / bruit des enregistrements. Toutefois, cette analyse ne s’est basée jusqu’ici que sur la quantification d’une seule harmonique ce qui a limité son emploi à la cartographie de l’orientation et de rétinotopie uniquement. En exploitant les plus hautes harmoniques, un modèle a été proposé afin d’estimer la taille des champs récepteurs et la sélectivité à la direction. Ce modèle a par la suite été validé par des approches conventionnelles dans le cortex visuel primaire.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les neurones du cortex visuel primaire (aire 17) du chat adulte répondent de manière sélective à différentes propriétés d’une image comme l’orientation, le contraste ou la fréquence spatiale. Cette sélectivité se manifeste par une réponse sous forme de potentiels d’action dans les neurones visuels lors de la présentation d’une barre lumineuse de forme allongée dans les champs récepteurs de ces neurones. La fréquence spatiale (FS) se mesure en cycles par degré (cyc./deg.) et se définit par la quantité de barres lumineuses claires et sombres présentées à une distance précise des yeux. Par ailleurs, jusqu’à récemment, l’organisation corticale chez l’adulte était considérée immuable suite à la période critique post-natale. Or, lors de l'imposition d'un stimulus non préféré, nous avons observé un phénomène d'entrainement sous forme d'un déplacement de la courbe de sélectivité à la suite de l'imposition d'une FS non-préférée différente de la fréquence spatiale optimale du neurone. Une deuxième adaptation à la même FS non-préférée induit une réponse neuronale différente par rapport à la première imposition. Ce phénomène de "gain cortical" avait déjà été observé dans le cortex visuel primaire pour ce qui est de la sélectivité à l'orientation des barres lumineuses, mais non pour la fréquence spatiale. Une telle plasticité à court terme pourrait être le corrélat neuronal d'une modulation de la pondération relative du poids des afférences synaptiques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La transmission cholinergique, et notamment muscarinique, joue un rôle déterminant dans le système nerveux central au niveau de la modulation de la plasticité neuronale. La libération d'ACh dans le cortex visuel est concomitante à la présentation de stimuli visuels. Par son action sur la transmission neuronale corticale, l'ACh module à long terme les réponses à de nouveaux stimuli sensoriels. Dans la présente étude, l'implication du système cholinergique au niveau du développement cortical et de la plasticité inductible chez l'adulte a été étudiée par les techniques d'imagerie optique des signaux intrinsèques et d'immunohistochimie chez le rongeur. Ces deux techniques de cartographie de l'activité corticale nous ont permis d'évaluer, d'une part, l'impact modulatoire de l'acétylcholine (ACh) et de ses récepteurs muscariniques (mAChRs, M1 à M5) sur l'organisation fonctionnelle du cortex visuel chez des souris déficitaires pour les mAChRs et, d'autre part, l'impact de la libération d'ACh lors d'un entraînement visuel, sur le nombre, la nature neurochimique et la localisation au niveau des couches corticales des neurones corticaux activés. L'implication du système cholinergique sur la cartographie du cortex visuel primaire a été étudiée sur les souris génétiquement modifiées délétères (knock out : KO) pour différentes combinaisons de sous-types de mAChRs. L'imagerie des signaux intrinsèques, basée sur les changements de réflectance corticale de la lumière survenant lors de la consommation d'oxygène par les neurones activés, a permis de déterminer, lors de stimulations visuelles, les différentes composantes des propriétés des neurones du cortex visuel. La taille des champs récepteurs des neurones est diminuée lors de l'absence du récepteur M1 ou de la combinaison M1/M3. Le champ visuel apparent est augmenté chez les souris M2/M4-KO mais diminué chez les M1-KO. La finesse des connectivités neuronales (évaluée par la mesure du scatter du signal) est réduite lors de l'absence des récepteurs M2/M4. Finalement, chez les animaux M1/M3-KO, une diminution de l'acuité visuelle est observée. L'effet à long-terme d'un entraînement visuel couplé à une stimulation des neurones cholinergiques sur la distribution et la nature des neurones immunoréactifs au c-Fos, c'est-à-dire les neurones activés, a été évalué. Puisque cette stimulation combinée est en mesure de produire des modifications comportementales, notamment au niveau de l'acuité visuelle, il devenait intéressant de s'attarder aux modifications neuroanatomiques et de déterminer quels éléments de l'équilibre excitateur/inhibiteur sont compromis chez ces animaux. Les résultats obtenus démontrent que les animaux ayant reçu une combinaison de l'entraînement cholinergique et visuel présentent une augmentation du marquage c-Fos comparativement aux animaux n'ayant reçu que la stimulation cholinergique. D'autre part, chez ces animaux, il est possible d'observer des modifications de l'équilibre excitateur/inhibiteur qui correspond au potentiel plastique de la région. En conclusion, ces études démontrent un rôle important du système cholinergique dans le développement, la maturation et la plasticité du système visuel cérébral.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les objectifs de ce mémoire sont d’étudier la rétinotopie et les asymétries fonctionnelles du cortex visuel chez l’humain avec la spectroscopie proche de l’infrarouge fonctionnelle (SPIRf), tout en confirmant la fiabilité de cette technique. Tel qu’attendu, les résultats montrent une activation plus forte dans l’hémisphère controlatéral et dans le cortex haut/bas inverse à l’hémichamp stimulé. Nous avons également mesuré une activation significativement plus forte dans le cortex visuel supérieur (lorsque le champ visuel inférieur était stimulé) que l’activation dans le cortex visuel inférieur (lorsque le champ visuel supérieur était stimulé), surtout lorsque ces stimuli étaient présentés dans le champ visuel droit. Il s’agit de la première étude en SPIRf à observer les asymétries horizontale et verticale du cortex visuel et à ainsi confirmer l’existence de ces asymétries. Cette étude témoigne également de la fiabilité de la SPIRf comme technique d’imagerie pour cartographier le cerveau humain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les informations sensorielles sont traitées dans le cortex par des réseaux de neurones co-activés qui forment des assemblées neuronales fonctionnelles. Le traitement visuel dans le cortex est régit par différents aspects des caractéristiques neuronales tels que l’aspect anatomique, électrophysiologique et moléculaire. Au sein du cortex visuel primaire, les neurones sont sélectifs à divers attributs des stimuli tels que l’orientation, la direction, le mouvement et la fréquence spatiale. Chacun de ces attributs conduit à une activité de décharge maximale pour une population neuronale spécifique. Les neurones du cortex visuel ont cependant la capacité de changer leur sélectivité en réponse à une exposition prolongée d’un stimulus approprié appelée apprentissage visuel ou adaptation visuelle à un stimulus non préférentiel. De ce fait, l’objectif principal de cette thèse est d’investiguer les mécanismes neuronaux qui régissent le traitement visuel durant une plasticité induite par adaptation chez des animaux adultes. Ces mécanismes sont traités sous différents aspects : la connectivité neuronale, la sélectivité neuronale, les propriétés électrophysiologiques des neurones et les effets des drogues (sérotonine et fluoxétine). Le modèle testé se base sur les colonnes d’orientation du cortex visuel primaire. La présente thèse est subdivisée en quatre principaux chapitres. Le premier chapitre (A) traite de la réorganisation du cortex visuel primaire suite à une plasticité induite par adaptation visuelle. Le second chapitre (B) examine la connectivité neuronale fonctionnelle en se basant sur des corrélations croisées entre paires neuronales ainsi que sur des corrélations d’activités de populations neuronales. Le troisième chapitre (C) met en liaison les aspects cités précédemment (les effets de l’adaptation visuelle et la connectivité fonctionnelle) aux propriétés électrophysiologiques des neurones (deux classes de neurones sont traitées : les neurones à décharge régulière et les neurones à décharge rapide ou burst). Enfin, le dernier chapitre (D) a pour objectif l’étude de l’effet du couplage de l’adaptation visuelle à l’administration de certaines drogues, notamment la sérotonine et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Méthodes En utilisant des enregistrements extracellulaires d’activités neuronales dans le cortex visuel primaire (V1) combinés à un processus d’imagerie cérébrale optique intrinsèque, nous enregistrons l’activité de décharge de populations neuronales et nous examinons l’activité de neurones individuels extraite des signaux multi-unitaires. L’analyse de l’activité cérébrale se base sur différents algorithmes : la distinction des propriétés électrophysiologiques des neurones se fait par calcul de l’intervalle de temps entre la vallée et le pic maximal du potentiel d’action (largeur du potentiel d’action), la sélectivité des neurones est basée sur leur taux de décharge à différents stimuli, et la connectivité fonctionnelle utilise des calculs de corrélations croisées. L’utilisation des drogues se fait par administration locale sur la surface du cortex (après une craniotomie et une durotomie). Résultats et conclusions Dans le premier chapitre, nous démontrons la capacité des neurones à modifier leur sélectivité après une période d’adaptation visuelle à un stimulus particulier, ces changements aboutissent à une réorganisation des cartes corticales suivant un patron spécifique. Nous attribuons ce résultat à la flexibilité de groupes fonctionnels de neurones qui étaient longtemps considérés comme des unités anatomiques rigides. En effet, nous observons une restructuration extensive des domaines d’orientation dans le but de remodeler les colonnes d’orientation où chaque stimulus est représenté de façon égale. Ceci est d’autant plus confirmé dans le second chapitre où dans ce cas, les cartes de connectivité fonctionnelle sont investiguées. En accord avec les résultats énumérés précédemment, les cartes de connectivité montrent également une restructuration massive mais de façon intéressante, les neurones utilisent une stratégie de sommation afin de stabiliser leurs poids de connectivité totaux. Ces dynamiques de connectivité sont examinées dans le troisième chapitre en relation avec les propriétés électrophysiologiques des neurones. En effet, deux modes de décharge neuronale permettent la distinction entre deux classes neuronales. Leurs dynamiques de corrélations distinctes suggèrent que ces deux classes jouent des rôles clés différents dans l’encodage et l’intégration des stimuli visuels au sein d’une population neuronale. Enfin, dans le dernier chapitre, l’adaptation visuelle est combinée avec l’administration de certaines substances, notamment la sérotonine (neurotransmetteur) et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Ces deux substances produisent un effet similaire en facilitant l’acquisition des stimuli imposés par adaptation. Lorsqu’un stimulus non optimal est présenté en présence de l’une des deux substances, nous observons une augmentation du taux de décharge des neurones en présentant ce stimulus. Nous présentons un modèle neuronal basé sur cette recherche afin d’expliquer les fluctuations du taux de décharge neuronale en présence ou en absence des drogues. Cette thèse présente de nouvelles perspectives quant à la compréhension de l’adaptation des neurones du cortex visuel primaire adulte dans le but de changer leur sélectivité dans un environnement d’apprentissage. Nous montrons qu’il y a un parfait équilibre entre leurs habiletés plastiques et leur dynamique d’homéostasie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’exposition du fœtus à l’éthanol est reconnue comme étant la principale cause de maladies évitables lors du développement. Une forte exposition à l’alcool durant la gestation peut occasionner des dysmorphies cranio-faciales et des retards mentaux, ainsi que des troubles d’apprentissages et du comportement. Le développement du système visuel est également perturbé chez une grande majorité d’enfants qui ont été exposés à l’alcool. Lorsque les doses prises sont élevées, le système visuel peut présenter une panoplie de symptômes comme une augmentation de la tortuosité des vaisseaux rétiniens, de la myopie, de l’hypermétropie, du strabisme et une hypoplasie du nerf optique. Cependant, très peu d’études se sont penchées sur les effets de plus faibles doses sur le développement du système visuel du primate. Le singe est un excellent modèle pour étudier le système visuel car il possède plusieurs similitudes avec l’humain tant au niveau développemental qu’au niveau structurel. De plus, le singe utilisé, le Chlrocebus aethiops sabeus, possède l’avantage que des individus de cette espèce ont une consommation naturelle et volontaire à l’alcool. Une étude (Clarren et al., 1990) a suggéré qu’une faible exposition à l’alcool du fœtus du primate non humain occasionnait une diminution du nombre de cellules ganglionnaires de la rétine (CGRs). Étant donné que le corps genouillé latéral dorsal (CGLd) reçoit la plupart de ses intrants de la rétine, il est raisonnable d’assumer que les couches rétino-récipientes du CGLd devraient être aussi affectées. Nous avons alors émis l’hypothèse que le CGLd devrait également subir une diminution du nombre de neurones. Pour la première fois, nous avons utilisé une méthode stéréologique pour quantifier le nombre de cellules dans les couches parvo- (P) et magnocellulaires (M) du CGLd. Contrairement à notre hypothèse de départ, nous n’avons pas observé de diminution dans le nombre global de neurones dans le CGLd des animaux exposés à l’alcool par rapport à des sujets contrôles, ni une diminution de son volume. Nous avons toutefois observé une diminution de la taille du corps cellulaire seulement dans la population M du CGLd. Ces résultats suggèrent que le système visuel est affecté par une faible exposition à l’alcool durant son développement qui devrait se traduire sur le comportement par des déficits dans les fonctions de la voie M.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les interneurones GABAergiques constituent une population mineure de cellules par rapport aux neurones glutamatergiques dans le néocortex. Cependant ils contrôlent fortement l'excitabilité neuronale, la dynamique des réseaux neuronaux et la plasticité synaptique. L'importance des circuits GABAergiques dans le processus fonctionnel et la plasticité des réseaux corticaux est soulignée par des résultats récents qui montrent que des modifications très précises et fiables des circuits GABAergiques sont associées à divers troubles du développement neurologique et à des défauts dans les fonctions cérébrales. De ce fait, la compréhension des mécanismes cellulaires et moléculaires impliquant le développement des circuits GABAergiques est la première étape vers une meilleure compréhension de la façon dont les anomalies de ces processus peuvent se produire. La molécule d’adhésion cellulaire neurale (NCAM) appartient à la super-famille des immunoglobulines de reconnaissance cellulaire et est impliquée dans des interactions homophiliques et hétérophiliques avec d’autres molécules. Même si plusieurs rôles de NCAM ont été démontrés dans la croissance neuronale, la fasciculation axonale, la formation et la maturation de synapses, de même que dans la plasticité cellulaire de plusieurs systèmes, le rôle de NCAM dans la formation des synapses GABAergiques reste inconnu. Ce projet visait donc à déterminer le rôle précis de NCAM dans le processus de maturation des synapses GABAergiques dans le néocortex, en modulant son expression à différentes étapes du développement. L’approche choisie a été de supprimer NCAM dans des cellules GABAergiques à paniers avant la maturation des synapses (EP12-18), pendant la maturation (EP16-24), ou durant le maintien de celles-ci (EP24-32). Les méthodes utilisées ont été le clonage moléculaire, l’imagerie confocale, la culture de coupes organotypiques et des techniques morphométriques de quantification de l’innervation GABAergique. Nos résultats montrent que l’inactivation de NCAM durant la phase de maturation des synapses périsomatiques (EP16-24) cause une réduction du nombre de synapses GABAergiques périsomatiques et du branchement de ces axones. En revanche, durant la phase de maintien (EP26-32), l’inactivation de NCAM n’a pas affecté ces paramètres des synapses GABAergiques. Or, il existe trois isoformes de NCAM (NCAM120, 140 et 180) qui pourraient jouer des rôles différents dans les divers types cellulaires ou à des stades développementaux différents. Nos données montrent que NCAM120 et 140 sont nécessaires à la maturation des synapses périsomatiques GABAergiques. Cependant, NCAM180, qui est l’isoforme la plus étudiée et caractérisée, ne semble pas être impliquée dans ce processus. De plus, l’inactivation de NCAM n’a pas affecté la densité des épines dendritiques ou leur longueur. Elle est donc spécifique aux synapses périsomatiques GABAeriques. Finalement, nos résultats suggèrent que le domaine conservé C-terminal KENESKA est essentiel à la maturation des synapses périsomatiques GABAergiques. Des expériences futures nous aiderons à mieux comprendre la mécanistique et les différentes voies de signalisation impliquées.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale.