4 resultados para Visual texture recognition
em Université de Montréal, Canada
Resumo:
Les temps de réponse dans une tache de reconnaissance d’objets visuels diminuent de façon significative lorsque les cibles peuvent être distinguées à partir de deux attributs redondants. Le gain de redondance pour deux attributs est un résultat commun dans la littérature, mais un gain causé par trois attributs redondants n’a été observé que lorsque ces trois attributs venaient de trois modalités différentes (tactile, auditive et visuelle). La présente étude démontre que le gain de redondance pour trois attributs de la même modalité est effectivement possible. Elle inclut aussi une investigation plus détaillée des caractéristiques du gain de redondance. Celles-ci incluent, outre la diminution des temps de réponse, une diminution des temps de réponses minimaux particulièrement et une augmentation de la symétrie de la distribution des temps de réponse. Cette étude présente des indices que ni les modèles de course, ni les modèles de coactivation ne sont en mesure d’expliquer l’ensemble des caractéristiques du gain de redondance. Dans ce contexte, nous introduisons une nouvelle méthode pour évaluer le triple gain de redondance basée sur la performance des cibles doublement redondantes. Le modèle de cascade est présenté afin d’expliquer les résultats de cette étude. Ce modèle comporte plusieurs voies de traitement qui sont déclenchées par une cascade d’activations avant de satisfaire un seul critère de décision. Il offre une approche homogène aux recherches antérieures sur le gain de redondance. L’analyse des caractéristiques des distributions de temps de réponse, soit leur moyenne, leur symétrie, leur décalage ou leur étendue, est un outil essentiel pour cette étude. Il était important de trouver un test statistique capable de refléter les différences au niveau de toutes ces caractéristiques. Nous abordons la problématique d’analyser les temps de réponse sans perte d’information, ainsi que l’insuffisance des méthodes d’analyse communes dans ce contexte, comme grouper les temps de réponses de plusieurs participants (e. g. Vincentizing). Les tests de distributions, le plus connu étant le test de Kolmogorov- Smirnoff, constituent une meilleure alternative pour comparer des distributions, celles des temps de réponse en particulier. Un test encore inconnu en psychologie est introduit : le test d’Anderson-Darling à deux échantillons. Les deux tests sont comparés, et puis nous présentons des indices concluants démontrant la puissance du test d’Anderson-Darling : en comparant des distributions qui varient seulement au niveau de (1) leur décalage, (2) leur étendue, (3) leur symétrie, ou (4) leurs extrémités, nous pouvons affirmer que le test d’Anderson-Darling reconnait mieux les différences. De plus, le test d’Anderson-Darling a un taux d’erreur de type I qui correspond exactement à l’alpha tandis que le test de Kolmogorov-Smirnoff est trop conservateur. En conséquence, le test d’Anderson-Darling nécessite moins de données pour atteindre une puissance statistique suffisante.
Resumo:
Les personnes ayant un trouble du spectre autistique (TSA) manifestent des particularités perceptives. En vision, des travaux influents chez les adultes ont mené à l’élaboration d’un modèle explicatif du fonctionnement perceptif autistique qui suggère que l’efficacité du traitement visuel varie en fonction de la complexité des réseaux neuronaux impliqués (Hypothèse spécifique à la complexité). Ainsi, lorsque plusieurs aires corticales sont recrutées pour traiter un stimulus complexe (e.g., modulations de texture; attributs de deuxième ordre), les adultes autistes démontrent une sensibilité diminuée. À l’inverse, lorsque le traitement repose principalement sur le cortex visuel primaire V1 (e.g., modulations locales de luminance; attributs de premier ordre), leur sensibilité est augmentée (matériel statique) ou intacte (matériel dynamique). Cette dissociation de performance est spécifique aux TSA et peut s’expliquer, entre autre, par une connectivité atypique au sein de leur cortex visuel. Les mécanismes neuronaux précis demeurent néanmoins méconnus. De plus, on ignore si cette signature perceptuelle est présente à l’enfance, information cruciale pour les théories perceptives de l’autisme. Le premier volet de cette thèse cherche à vérifier, à l’aide de la psychophysique et l’électrophysiologie, si la double dissociation de performance entre les attributs statiques de premier et deuxième ordre se retrouve également chez les enfants autistes d’âge scolaire. Le second volet vise à évaluer chez les enfants autistes l’intégrité des connexions visuelles descendantes impliquées dans le traitement des textures. À cet effet, une composante électrophysiologique reflétant principalement des processus de rétroaction corticale a été obtenue lors d’une tâche de ségrégation des textures. Les résultats comportementaux obtenus à l’étude 1 révèlent des seuils sensoriels similaires entre les enfants typiques et autistes à l’égard des stimuli définis par des variations de luminance et de texture. Quant aux données électrophysiologiques, il n’y a pas de différence de groupe en ce qui concerne le traitement cérébral associé aux stimuli définis par des variations de luminance. Cependant, contrairement aux enfants typiques, les enfants autistes ne démontrent pas une augmentation systématique d’activité cérébrale en réponse aux stimuli définis par des variations de texture pendant les fenêtres temporelles préférentiellement associées au traitement de deuxième ordre. Ces différences d’activation émergent après 200 ms et engagent les aires visuelles extrastriées des régions occipito-temporales et pariétales. Concernant la connectivité cérébrale, l’étude 2 indique que les connexions visuelles descendantes sont fortement asymétriques chez les enfants autistes, en défaveur de la région occipito-temporale droite. Ceci diffère des enfants typiques pour qui le signal électrophysiologique reflétant l’intégration visuo-corticale est similaire entre l’hémisphère gauche et droit du cerveau. En somme, en accord avec l’hypothèse spécifique à la complexité, la représentation corticale du traitement de deuxième ordre (texture) est atypiquement diminuée chez les enfants autistes, et un des mécanismes cérébraux impliqués est une altération des processus de rétroaction visuelle entre les aires visuelles de haut et bas niveau. En revanche, contrairement aux résultats obtenus chez les adultes, il n’y a aucun indice qui laisse suggérer la présence de mécanismes supérieurs pour le traitement de premier ordre (luminance) chez les enfants autistes.
Resumo:
Au cours des 25 dernières années, les recherches sur le développement visuel chez l’humain à l’aide de l’électrophysiologie cérébrale et des potentiels évoqués visuels (PEV) ont permis d’explorer plusieurs fonctions associées au cortex visuel. Néanmoins, le développement de certaines d’entre elles (p. ex. segmentation des textures), tout comme les effets de la prématurité sur celles-ci, sont des aspects qui nécessitent d’être davantage étudiés. Par ailleurs, compte tenu de l’importance de la vision dans le développement de certaines fonctions cognitives (p. ex. lecture, visuomotricité), de plus en plus de recherches s’intéressent aux relations entre la vision et la cognition. Les objectifs généraux de la présente thèse étaient d’étudier le développement visuel chez les enfants nés à terme et nés prématurément à l’aide de l’électrophysiologie, puis de documenter les impacts de la prématurité sur le développement visuel et cognitif. Deux études ont été réalisées. La première visait à examiner, chez des enfants nés prématurément, le développement des voies visuelles primaires durant la première année de vie et en début de scolarisation, ainsi qu’à documenter leur profil cognitif et comportemental. À l’aide d’un devis semi-longitudinal, dix enfants nés prématurément ont été évalués à l’âge de six mois (âge corrigé) et à 7-8 ans en utilisant des PEV, et des épreuves cognitives et comportementales à l’âge scolaire. Leurs résultats ont été comparés à ceux de 10 enfants nés à terme appariés pour l’âge. À six mois, aucune différence de latence ou d’amplitude des ondes N1 et P1 n’a été trouvée entre les groupes. À l’âge scolaire, les enfants nés prématurément montraient, comparativement aux enfants nés à terme, une plus grande amplitude de N1 dans la condition P-préférentielle et dans celle co-stimulant les voies M et P, et de P1 (tendance) dans la condition M-préférentielle. Aucune différence n’a été trouvée entre les groupes aux mesures cognitives et comportementales. Ces résultats suggèrent qu’une naissance prématurée exerce un impact sur le développement des voies visuelles centrales. L’objectif de la seconde étude était de documenter le développement des processus de segmentation visuelle des textures durant la petite enfance chez des enfants nés à terme et nés prématurément à l’aide des PEV et d’un devis transversal. Quarante-cinq enfants nés à terme et 43 enfants nés prématurément ont été évalués à 12, 24 ou 36 mois (âge corrigé pour les prématurés à 12 et 24 mois). Les résultats indiquaient une diminution significative de la latence de la composante N2 entre 12 et 36 mois en réponse à l’orientation, à la texture et à la segmentation des textures, ainsi qu’une diminution significative d’amplitude pour l’orientation entre 12 et 24 mois, et pour la texture entre 12 et 24 mois, et 12 et 36 mois. Les comparaisons entre les enfants nés à terme et ceux nés prématurément démontraient une amplitude de N2 réduite chez ces derniers à 12 mois pour l’orientation et la texture. Bien que ces différences ne fussent plus apparentes à 24 mois, nos résultats semblent refléter un délai de maturation des processus visuel de bas et de plus haut niveau chez les enfants nés prématurément, du moins, pendant la petite enfance. En conclusion, nos résultats indiquent que la prématurité, même sans atteinte neurologique importante, altère le développement des fonctions visuelles à certaines périodes du développement et mettent en évidence l’importance d’en investiguer davantage les impacts (p. ex. cognitifs, comportementaux, scolaires) à moyen et long-terme.
Resumo:
La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.