5 resultados para Varietà, curve algebriche, curve ellittiche, gruppo dei punti a coordinate razionali, teorema di Mordell-Weil.
em Université de Montréal, Canada
Resumo:
Ma thèse propose une analyse attentive de la ré-écriture de l'histoire articulée dans trois romans du collectif d'écrivains italiens publiant sous le pseudonyme Wu Ming: "Q", "54" et "Manituana". Partant du pamphlet publié par les Wu Ming en 2008 sur leur conception du roman historique et de l’écriture romanesque en général, the New Italian Epic (NIE), je propose deux angles d’approche pour mettre en évidence la relecture de l’histoire se dessinant dans les romans cités ci-dessus: la notion du regard oblique (qui est mentionnée dans le NIE); et le concept de multitude. La technique du regard oblique implique une réflexivité de la narration, une mise en abîme du processus narratif qui est effectuéé par le biais d’un point de vue insolite. Ce dernier peut provenir d'un animal, d’un objet animé, ou même d’un objet mystérieux comme le flux immatériel. Cette technique a déjà des précédents littéraires dans l’oeuvre d’écrivains tels que Italo Calvino ou Thomas Pynchon, mais dans la nouvelle forme qu’elle acquiert dans les textes des Wu Ming, elle permet l’articulation d’une relecture transversale de l’histoire. Cette relecture transversale émergeant dans les romans des Wu Ming est analysée dans la première partie de la thèse. La conceptualisation du regard oblique que je développe dans cette partie se base sur la théorie de l'anamorphose de Jacques Lacan, ainsi que sur le concept de la "troisième personne" proposé récemment par le philosophe Roberto Esposito. La seconde partie de la thèse aborde la problématique de la confrontation de l'écriture des Wu Ming à la situation socio-politique internationale contemporaine, soit comment leur ré-écriture de l'histoire s'insère dans la situation biopolitique globale. Dans les romans des Wu Ming on voit surgir une interprétation de cette situation globale qui dépasse les notions classiques de l'État et du citoyen. Le concept du biopolitique se prête à diverses interprétations: dans ses écrits des années 1970, Michel Foucault, qui est un des théoriciens majeurs du biopouvoir et de la biopolitique, ne parvient pas à proposer une interprétation unique et précise de ce dernier concept. Plusieurs philosophes italiens ont repris ce discours en le développant chacun à sa manière. Certains, comme Paolo Virno et, un peu plus tard Toni Negri, voient dans la notion de la Multitude une possibilité pour équilibrer le rapport pouvoir/personne et par conséquent pour développer de nouvelles possibilités révolutionnaires pour la déconstruction du biopouvoir. Les Wu Ming semblent suivre la voie positive de la multitude, qui selon leur conception correspond plus à une interprétation néo-marxiste de l’histoire.
Resumo:
In this paper, we use identification-robust methods to assess the empirical adequacy of a New Keynesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants of the model are studied: one based on a rationalexpectations assumption, and a modification to the latter which consists in using survey data on inflation expectations. The results based on these two specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our findings underscore the need for employing identificationrobust inference methods in the estimation of expectations-based dynamic macroeconomic relations.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.