5 resultados para Ultrasound attenuation
em Université de Montréal, Canada
Resumo:
L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité). L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique. Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses. L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue. L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels. Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation. Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie.
Resumo:
L’accident vasculaire cérébral (AVC) est une cause principale de décès et de morbidité dans le monde; une bonne partie des AVC est causée par la plaque d’athérosclérose carotidienne. La prévention de l’AVC chez les patients ayant une plaque carotidienne demeure controversée, vu les risques et bénéfices ambigus associés au traitement chirurgical ou médical. Plusieurs méthodes d’imagerie ont été développées afin d’étudier la plaque vulnérable (dont le risque est élevé), mais aucune n’est suffisamment validée ou accessible pour permettre une utilisation comme outil de dépistage. L’élastographie non-invasive vasculaire (NIVE) est une technique nouvelle qui cartographie les déformations (élasticité) de la plaque afin de détecter les plaque vulnérables; cette technique n’est pas encore validée cliniquement. Le but de ce projet est d’évaluer la capacité de NIVE de caractériser la composition de la plaque et sa vulnérabilité in vivo chez des patients ayant des plaques sévères carotidiennes, en utilisant comme étalon de référence, l’imagerie par résonance magnétique (IRM) à haute-résolution. Afin de poursuivre cette étude, une connaissance accrue de l’AVC, l’athérosclérose, la plaque vulnérable, ainsi que des techniques actuelles d’imagerie de la plaque carotidienne, est requise. Trente-et-un sujets ont été examinés par NIVE par ultrasonographie et IRM à haute-résolution. Sur 31 plaques, 9 étaient symptomatiques, 17 contenaient des lipides, et 7 étaient vulnérables selon l’IRM. Les déformations étaient significativement plus petites chez les plaques contenant des lipides, avec une sensibilité élevée et une spécificité modérée. Une association quadratique entre la déformation et la quantité de lipide a été trouvée. Les déformations ne pouvaient pas distinguer les plaques vulnérables ou symptomatiques. En conclusion, NIVE par ultrasonographie est faisable chez des patients ayant des sténoses carotidiennes significatives et peut détecter la présence d’un coeur lipidique. Des études supplémentaires de progression de la plaque avec NIVE sont requises afin d’identifier les plaques vulnérables.
Resumo:
Les diagnostics cliniques des maladies cardio-vasculaires sont principalement effectués à l’aide d’échographies Doppler-couleur malgré ses restrictions : mesures de vélocité dépendantes de l’angle ainsi qu’une fréquence d’images plus faible à cause de focalisation traditionnelle. Deux études, utilisant des approches différentes, adressent ces restrictions en utilisant l’imagerie à onde-plane, post-traitée avec des méthodes de délai et sommation et d’autocorrélation. L’objectif de la présente étude est de ré-implémenté ces méthodes pour analyser certains paramètres qui affecte la précision des estimations de la vélocité du flux sanguin en utilisant le Doppler vectoriel 2D. À l’aide d’expériences in vitro sur des flux paraboliques stationnaires effectuées avec un système Verasonics, l’impact de quatre paramètres sur la précision de la cartographie a été évalué : le nombre d’inclinaisons par orientation, la longueur d’ensemble pour les images à orientation unique, le nombre de cycles par pulsation, ainsi que l’angle de l’orientation pour différents flux. Les valeurs optimales sont de 7 inclinaisons par orientation, une orientation de ±15° avec 6 cycles par pulsation. La précision de la reconstruction est comparable à l’échographie Doppler conventionnelle, tout en ayant une fréquence d’image 10 à 20 fois supérieure, permettant une meilleure caractérisation des transitions rapides qui requiert une résolution temporelle élevée.
Resumo:
Dans le contexte de la caractérisation des tissus mammaires, on peut se demander ce que l’examen d’un attribut en échographie quantitative (« quantitative ultrasound » - QUS) d’un milieu diffusant (tel un tissu biologique mou) pendant la propagation d’une onde de cisaillement ajoute à son pouvoir discriminant. Ce travail présente une étude du comportement variable temporel de trois paramètres statistiques (l’intensité moyenne, le paramètre de structure et le paramètre de regroupement des diffuseurs) d’un modèle général pour l’enveloppe écho de l’onde ultrasonore rétrodiffusée (c.-à-d., la K-distribution homodyne) sous la propagation des ondes de cisaillement. Des ondes de cisaillement transitoires ont été générés en utilisant la mèthode d’ imagerie de cisaillement supersonique ( «supersonic shear imaging » - SSI) dans trois fantômes in-vitro macroscopiquement homogènes imitant le sein avec des propriétés mécaniques différentes, et deux fantômes ex-vivo hétérogénes avec tumeurs de souris incluses dans un milieu environnant d’agargélatine. Une comparaison de l’étendue des trois paramètres de la K-distribution homodyne avec et sans propagation d’ondes de cisaillement a montré que les paramètres étaient significativement (p < 0,001) affectès par la propagation d’ondes de cisaillement dans les expériences in-vitro et ex-vivo. Les résultats ont également démontré que la plage dynamique des paramétres statistiques au cours de la propagation des ondes de cisaillement peut aider à discriminer (avec p < 0,001) les trois fantômes homogènes in-vitro les uns des autres, ainsi que les tumeurs de souris de leur milieu environnant dans les fantômes hétérogénes ex-vivo. De plus, un modéle de régression linéaire a été appliqué pour corréler la plage de l’intensité moyenne sous la propagation des ondes de cisaillement avec l’amplitude maximale de déplacement du « speckle » ultrasonore. La régression linéaire obtenue a été significative : fantômes in vitro : R2 = 0.98, p < 0,001 ; tumeurs ex-vivo : R2 = 0,56, p = 0,013 ; milieu environnant ex-vivo : R2 = 0,59, p = 0,009. En revanche, la régression linéaire n’a pas été aussi significative entre l’intensité moyenne sans propagation d’ondes de cisaillement et les propriétés mécaniques du milieu : fantômes in vitro : R2 = 0,07, p = 0,328, tumeurs ex-vivo : R2 = 0,55, p = 0,022 ; milieu environnant ex-vivo : R2 = 0,45, p = 0,047. Cette nouvelle approche peut fournir des informations supplémentaires à l’échographie quantitative statistique traditionnellement réalisée dans un cadre statique (c.-à-d., sans propagation d’ondes de cisaillement), par exemple, dans le contexte de l’imagerie ultrasonore en vue de la classification du cancer du sein.
Resumo:
Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée.