3 resultados para Tutoring system

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le module de l'apprenant est l'une des composantes les plus importantes d’un Système Tutoriel Intelligent (STI). L'extension du modèle de l'apprenant n'a pas cessé de progresser. Malgré la définition d’un profil cognitif et l’intégration d’un profil émotionnel, le module de l’apprenant demeure non exhaustif. Plusieurs senseurs physiologiques sont utilisés pour raffiner la reconnaissance des états cognitif et émotionnel de l’apprenant mais l’emploi simultané de tous ces senseurs l’encombre. De plus, ils ne sont pas toujours adaptés aux apprenants dont les capacités sont réduites. Par ailleurs, la plupart des stratégies pédagogiques exécutées par le module du tuteur ne sont pas conçues à la base d’une collecte dynamique de données en temps réel, cela diminue donc de leur efficacité. L’objectif de notre recherche est d’explorer l’activité électrique cérébrale et de l’utiliser comme un nouveau canal de communication entre le STI et l’apprenant. Pour ce faire nous proposons de concevoir, d’implémenter et d’évaluer le système multi agents NORA. Grâce aux agents de NORA, il est possible d’interpréter et d’influencer l’activité électrique cérébrale de l’apprenant pour un meilleur apprentissage. Ainsi, NORA enrichit le module apprenant d’un profile cérébral et le module tuteur de quelques nouvelles stratégies neuropédagogiques efficaces. L’intégration de NORA à un STI donne naissance à une nouvelle génération de systèmes tutoriels : les STI Cérébro-sensibles (ou STICS) destinés à aider un plus grand nombre d’apprenants à interagir avec l’ordinateur pour apprendre à gérer leurs émotions, maintenir la concentration et maximiser les conditions favorable à l’apprentissage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les émotions jouent un rôle primordial dans les processus cognitifs et plus particulièrement dans les tâches d’apprentissage. D’ailleurs, plusieurs recherches neurologiques ont montré l’interrelation qui existe entre la cognition et les émotions. Elles ont aussi déterminé plusieurs formes d’intelligence humaine autre que l’intelligence rationnelle parmi lesquelles nous distinguons la forme ayant comme dimension émotionnelle, à savoir l’intelligence émotionnelle, vu son impact sur les processus d’apprentissage. L’intelligence émotionnelle est alors un facteur significatif de réussite scolaire et professionnelle. Sous la lumière de ces constatations présentées, les informaticiens à leur tour, vont alors tenter de consentir de plus en plus de place au facteur émotionnel dans les systèmes informatiques et plus particulièrement dans ceux dédiés à l’apprentissage. L’intégration de l’intelligence émotionnelle dans ces systèmes et plus précisément, dans les Systèmes Tutoriels Intelligents (STI), va leur permettre de gérer les émotions de l’apprenant et par la suite améliorer ses performances. Dans ce mémoire, notre objectif principal est d’élaborer une stratégie d’apprentissage visant à favoriser et accentuer la mémorisation chez les enfants. Pour atteindre cet objectif, nous avons développé un cours d’anglais en ligne ainsi qu’un tuteur virtuel utilisant des ressources multimédia tels que le ton de la voix, la musique, les images et les gestes afin de susciter des émotions chez l’apprenant. Nous avons conduit une expérience pour tester l’efficacité de quelques stratégies émotionnelles ainsi qu’évaluer l’impact des émotions suscitées sur la capacité de mémorisation des connaissances à acquérir par l’apprenant. Les résultats de cette étude expérimentale ont prouvé que l’induction implicite des émotions chez ce dernier a une influence significative sur ses performances. Ils ont également montré qu’il n’existe pas une stratégie efficace pour tous les apprenants à la fois, cependant l’efficacité d’une telle stratégie par rapport à une autre dépend essentiellement du profil comportemental de l’apprenant déterminé à partir de son tempérament.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse vise à définir une nouvelle méthode d’enseignement pour les systèmes tutoriels intelligents dans le but d’améliorer l’acquisition des connaissances. L’apprentissage est un phénomène complexe faisant intervenir des mécanismes émotionnels et cognitifs de nature consciente et inconsciente. Nous nous intéressons à mieux comprendre les mécanismes inconscients du raisonnement lors de l’acquisition des connaissances. L’importance de ces processus inconscients pour le raisonnement est bien documentée en neurosciences, mais demeure encore largement inexplorée dans notre domaine de recherche. Dans cette thèse, nous proposons la mise en place d’une nouvelle approche pédagogique dans le domaine de l’éducation implémentant une taxonomie neuroscientifique de la perception humaine. Nous montrons que cette nouvelle approche agit sur le raisonnement et, à tour de rôle, améliore l’apprentissage général et l’induction de la connaissance dans un environnement de résolution de problème. Dans une première partie, nous présentons l’implémentation de notre nouvelle méthode dans un système tutoriel visant à améliorer le raisonnement pour un meilleur apprentissage. De plus, compte tenu de l’importance des mécanismes émotionnels dans l’apprentissage, nous avons également procédé dans cette partie à la mesure des émotions par des capteurs physiologiques. L’efficacité de notre méthode pour l’apprentissage et son impact positif observé sur les émotions a été validée sur trente et un participants. Dans une seconde partie, nous allons plus loin dans notre recherche en adaptant notre méthode visant à améliorer le raisonnement pour une meilleure induction de la connaissance. L’induction est un type de raisonnement qui permet de construire des règles générales à partir d’exemples spécifiques ou de faits particuliers. Afin de mieux comprendre l’impact de notre méthode sur les processus cognitifs impliqués dans ce type de raisonnement, nous avons eu recours à des capteurs cérébraux pour mesurer l’activité du cerveau des utilisateurs. La validation de notre approche réalisée sur quarante-trois volontaires montre l’efficacité de notre méthode pour l’induction de la connaissance et la viabilité de mesurer le raisonnement par des mesures cérébrales suite à l’application appropriée d’algorithmes de traitement de signal. Suite à ces deux parties, nous clorons la thèse par une discussion applicative en décrivant la mise en place d’un nouveau système tutoriel intelligent intégrant les résultats de nos travaux.