7 resultados para Tissue Repair

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le traitement du cancer à l’aide d’une exposition aux radiations ionisantes (RI) peut mener au développement de plusieurs effets secondaires importants, dont un retard de réparation et de régénération des tissus. Les mécanismes responsables de ces effets demeurent largement inconnus encore aujourd’hui, ce qui a pour effet de limiter le développement d’approches thérapeutiques. À l’aide d’un modèle de guérison de plaie cutanée chez la souris, nous avons cherché à déterminer les mécanismes par lesquels l’exposition aux RI limite la régénération de la peau. Nos résultats démontrent que l’induction de la "stromal-derived growth factor 1α" (SDF-1α), une cytokine normalement surexprimée dans les tissus hypoxiques, est sévèrement diminuée dans les plaies de souris irradiées versus non-irradiées. Ce défaut corrèle avec un retard de guérison des plaies et est encore évident plusieurs mois suivant l’exposition aux RI, suggérant qu’il y a une altération permanente de la capacité de la peau à se réparer. Parce que SDF-1α est secrété principalement par les fibroblastes du derme, nous avons évalué le potentiel des cellules stromales multipotentes (MSCs), qui sont reconnues pour secréter des niveaux élevés de SDF-1α, à accélérer la régénération de la peau chez les souris irradiées. L’injection de MSCs en périphéries des plaies a mené à une accélération remarquable de la guérison de la peau chez les souris exposées aux RI. Les actions des MSCs étaient principalement paracrines, dû au fait que les cellules n’ont pas migré à l’extérieur de leur site d’injection et ne se sont pas différentiées en kératinocytes. L’inhibition spécifique de l’expression de SDF-1α a mené à une réduction drastique de l’efficacité des MSCs à accélérer la fermeture de plaie indiquant que la sécrétion de SDF-1α par les MSCs est largement responsable de leur effet bénéfique. Nous avons découvert aussi qu’un des mécanismes par lequel SDF-1α accélère la guérison de plaie implique l’augmentation de la vascularisation au niveau de la peau blessée. Les résultats présentés dans ce mémoire démontrent collectivement que SDF-1α est une importante cytokine dérégulée au niveau des plaies cutanées irradiées, et que le déclin du potentiel de régénération des tissus qui est observé suivant une exposition au RI peut être renversé, s’il est possible de restaurer le microenvironnement de la blessure avec un support stromal adéquat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La barrière hémato-encéphalique (BHE) protège le système nerveux central (SNC) en contrôlant le passage des substances sanguines et des cellules immunitaires. La BHE est formée de cellules endothéliales liées ensemble par des jonctions serrées et ses fonctions sont maintenues par des astrocytes, celles ci sécrétant un nombre de facteurs essentiels. Une analyse protéomique de radeaux lipidiques de cellules endothéliales de la BHE humaine a identifié la présence de la voie de signalisation Hedgehog (Hh), une voie souvent liées à des processus de développement embryologique ainsi qu’au niveau des tissus adultes. Suite à nos expériences, j’ai déterminé que les astrocytes produisent et secrètent le ligand Sonic Hh (Shh) et que les cellules endothéliales humaines en cultures primaires expriment le récepteur Patched (Ptch)-1, le co-récepteur Smoothened (Smo) et le facteur de transcription Gli-1. De plus, l’activation de la voie Hh augmente l’étanchéité des cellules endothéliales de la BHE in vitro. Le blocage de l’activation de la voie Hh en utilisant l’antagoniste cyclopamine ainsi qu’en utilisant des souris Shh déficientes (-/-) diminue l’expression des protéines de jonctions serrées, claudin-5, occcludin, et ZO-1. La voie de signalisation s’est aussi montrée comme étant immunomodulatoire, puisque l’activation de la voie dans les cellules endothéliales de la BHE diminue l’expression de surface des molécules d’adhésion ICAM-1 et VCAM-1, ainsi que la sécrétion des chimiokines pro-inflammatoires IL-8/CXCL8 et MCP-1/CCL2, créant une diminution de la migration des lymphocytes CD4+ à travers une monocouche de cellules endothéliales de la BHE. Des traitements avec des cytokines pro-inflammatoires TNF-α and IFN-γ in vitro, augmente la production de Shh par les astrocytes ainsi que l’expression de surface de Ptch-1 et de Smo. Dans des lésions actives de la sclérose en plaques (SEP), où la BHE est plus perméable, les astrocytes hypertrophiques augmentent leur expression de Shh. Par contre, les cellules endothéliales de la BHE n’augmentent pas leur expression de Ptch-1 ou Smo, suggérant une dysfonction dans la voie de signalisation Hh. Ces résultats montrent que la voie de signalisation Hh promeut les propriétés de la BHE, et qu’un environnement d’inflammation pourrait potentiellement dérégler la BHE en affectant la voie de signalisation Hh des cellules endothéliales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le traitement du cancer à l’aide d’une exposition aux radiations ionisantes peut mener au développement de plusieurs effets secondaires importants, dont un retard de réparation et de régénération du tissu hématopoïétique. Les mécanismes responsables de ces effets demeurent encore inconnus, ce qui limite le développement de nouvelles approches thérapeutiques. À l’aide d’un modèle murin de prise de greffe, nos résultats démontrent que l’endommagement du microenvironnement par l’irradiation a un impact limitant sur le nichage hématopoïétique. Parce que le microenvironnement est composé principalement de cellules dérivées des cellules souches mésenchymateuses (CSM), nous avons évalué le potentiel des CSM à régénérer le tissu hématopoïétique par la reconstitution de la niche osseuse. Cette thérapie a mené à une augmentation remarquable du nichage hématopoïétique chez les souris irradiées. Les causes moléculaires impliquées dans le nichage hématopoïétiques sont encore inconnues, mais nous avons remarqué l’augmentation de la sécrétion de la cytokine « granulocyte-colony stimulating factor » (G-CSF) dans l’espace médullaire suite à l’irradiation. Le G-CSF est impliqué dans la mobilisation cellulaire et est fort possiblement nuisible à une prise de greffe. Nous avons évalué le potentiel d’une thérapie à base de CSM sécrétant le récepteur soluble du G-CSF afin de séquestrer le G-CSF transitoirement et les résultats obtenus démontrent que le blocage du G-CSF favorise le nichage hématopoïétique. Globalement, les données présentées dans ce mémoire démontrent que le microenvironnement osseux et le niveau de G-CSF dans la moelle sont importants dans le processus de nichage hématopoïétique et que la baisse du potentiel de régénération du tissu hématopoïétique suite à l’irradiation peut être renversée à l’aide d’une thérapie cellulaire de CSM génétiquement modifiées ou non.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Sclérose en plaques (SEP) est une maladie auto-immune inflammatoire démyélinisante du système nerveux central (SNC), lors de laquelle des cellules inflammatoires du sang périphérique infiltrent le SNC pour y causer des dommages cellulaires. Dans ces réactions neuroinflammatoires, les cellules immunitaires traversent le système vasculaire du SNC, la barrière hémo-encéphalique (BHE), pour avoir accès au SNC et s’y accumuler. La BHE est donc la première entité que rencontrent les cellules inflammatoires du sang lors de leur migration au cerveau. Ceci lui confère un potentiel thérapeutique important pour influencer l’infiltration de cellules du sang vers le cerveau, et ainsi limiter les réactions neuroinflammatoires. En effet, les interactions entre les cellules immunitaires et les parois vasculaires sont encore mal comprises, car elles sont nombreuses et complexes. Différents mécanismes pouvant influencer la perméabilité de la BHE aux cellules immunitaires ont été décrits, et représentent aujourd’hui des cibles potentielles pour le contrôle des réactions neuro-immunes. Cette thèse a pour objectif de décrire de nouveaux mécanismes moléculaires opérant au niveau de la BHE qui interviennent dans les réactions neuroinflammatoires et qui ont un potentiel thérapeutique pour influencer les interactions neuro-immunologiques. Ce travail de doctorat est séparé en trois sections. La première section décrit la caractérisation du rôle de l’angiotensine II dans la régulation de la perméabilité de la BHE. La seconde section identifie et caractérise la fonction d’une nouvelle molécule d’adhérence de la BHE, ALCAM, dans la transmigration de cellules inflammatoires du sang vers le SNC. La troisième section traite des propriétés sécrétoires de la BHE et du rôle de la chimiokine MCP-1 dans les interactions entre la BHE et les cellules souches. Dans un premier temps, nous démontrons l’importance de l’angiotensinogène (AGT) dans la régulation de la perméabilité de la BHE. L’AGT est sécrété par les astrocytes et métabolisé en angiotensine II pour pouvoir agir au niveau des CE de la BHE à travers le récepteur à l’angiotensine II, AT1 et AT2. Au niveau de la BHE, l’angiotensine II entraîne la phosphorylation et l’enrichissement de l’occludine au sein de radeaux lipidiques, un phénomène associé à l’augmentation de l’étanchéité de la BHE. De plus, dans les lésions de SEP, on retrouve une diminution de l’expression de l’AGT et de l’occludine. Ceci est relié à nos observations in vitro, qui démontrent que des cytokines pro-inflammatoires limitent la sécrétion de l’AGT. Cette étude élucide un nouveau mécanisme par lequel les astrocytes influencent et augmentent l’étanchéité de la BHE, et implique une dysfonction de ce mécanisme dans les lésions de la SEP où s’accumulent les cellules inflammatoires. Dans un deuxième temps, les techniques établies dans la première section ont été utilisées afin d’identifier les protéines de la BHE qui s’accumulent dans les radeaux lipidiques. En utilisant une technique de protéomique nous avons identifié ALCAM (Activated Leukocyte Cell Adhesion Molecule) comme une protéine membranaire exprimée par les CE de la BHE. ALCAM se comporte comme une molécule d’adhérence typique. En effet, ALCAM permet la liaison entre les cellules du sang et la paroi vasculaire, via des interactions homotypiques (ALCAM-ALCAM pour les monocytes) ou hétérotypiques (ALCAM-CD6 pour les lymphocytes). Les cytokines inflammatoires augmentent le niveau d’expression d’ALCAM par la BHE, ce qui permet un recrutement local de cellules inflammatoires. Enfin, l’inhibition des interactions ALCAM-ALCAM et ALCAM-CD6 limite la transmigration des cellules inflammatoires (monocytes et cellules T CD4+) à travers la BHE in vitro et in vivo dans un modèle murin de la SEP. Cette deuxième partie identifie ALCAM comme une cible potentielle pour influencer la transmigration de cellules inflammatoires vers le cerveau. Dans un troisième temps, nous avons pu démontrer l’importance des propriétés sécrétoires spécifiques à la BHE dans les interactions avec les cellules souches neurales (CSN). Les CSN représentent un potentiel thérapeutique unique pour les maladies du SNC dans lesquelles la régénération cellulaire est limitée, comme dans la SEP. Des facteurs qui limitent l’utilisation thérapeutique des CSN sont le mode d’administration et leur maturation en cellules neurales ou gliales. Bien que la route d’administration préférée pour les CSN soit la voie intrathécale, l’injection intraveineuse représente la voie d’administration la plus facile et la moins invasive. Dans ce contexte, il est important de comprendre les interactions possibles entre les cellules souches et la paroi vasculaire du SNC qui sera responsable de leur recrutement dans le parenchyme cérébral. En collaborant avec des chercheurs de la Belgique spécialisés en CSN, nos travaux nous ont permis de confirmer, in vitro, que les cellules souches neurales humaines migrent à travers les CE humaines de la BHE avant d’entamer leur différenciation en cellules du SNC. Suite à la migration à travers les cellules de la BHE les CSN se différencient spontanément en neurones, en astrocytes et en oligodendrocytes. Ces effets sont notés préférentiellement avec les cellules de la BHE par rapport aux CE non cérébrales. Ces propriétés spécifiques aux cellules de la BHE dépendent de la chimiokine MCP-1/CCL2 sécrétée par ces dernières. Ainsi, cette dernière partie suggère que la BHE n’est pas un obstacle à la migration de CSN vers le SNC. De plus, la chimiokine MCP-1 est identifiée comme un facteur sécrété par la BHE qui permet l’accumulation et la différentiation préférentielle de cellules souches neurales dans l’espace sous-endothélial. Ces trois études démontrent l’importance de la BHE dans la migration des cellules inflammatoires et des CSN vers le SNC et indiquent que de multiples mécanismes moléculaires contribuent au dérèglement de l’homéostasie du SNC dans les réactions neuro-immunes. En utilisant des modèles in vitro, in situ et in vivo, nous avons identifié trois nouveaux mécanismes qui permettent d’influencer les interactions entre les cellules du sang et la BHE. L’identification de ces mécanismes permet non seulement une meilleure compréhension de la pathophysiologie des réactions neuroinflammatoires du SNC et des maladies qui y sont associées, mais suggère également des cibles thérapeutiques potentielles pour influencer l’infiltration des cellules du sang vers le cerveau

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il a été suggéré que l’autophagie pouvait participer au processus fibrotique en favorisant la différenciation du fibroblaste en myofibroblaste. La sénescence cellulaire a aussi été montrée comme impliquée dans la réparation tissulaire et la fibrose. Des liens ont été établis entre autophagie et sénescence. Cette étude a pour but d’investiguer les liens possibles entre autophagie, sénescence et différenciation myofibroblastique afin de mieux comprendre les mécanismes moléculaires régulant la réparation tissulaire et la fibrose. Les fibroblastes carencés en sérum pendant quatre jours montrent des ratios LC3B-II/-I élevés et des niveaux de SQSTM1/p62 diminués. L’augmentation de l’autophagie est accompagnée d’une augmentation de l’expression des marqueurs de différenciation myofibroblastique ACTA2/αSMA et collagènes de type 1 et 3 et de la formation de fibres de stress. Les fibroblastes autophagiques expriment les marqueurs de sénescence CDKN1A (p21) et p16INK4a (p16) et montrent une augmentation de l’activité beta-galactosidase associée à la sénescence. L’inhibition de l’autophagie à l’aide de différents inhibiteurs de phosphoinositide 3-kinase de classe I et de phosphatidylinositol 3-kinase de classe III (PtdIns3K) ou par inhibition génique à l’aide d’ARN interférant ATG7 bloquent l’expression des marqueurs de différenciation et de sénescence. L’expression et la sécrétion de CTGF (connective tissue growth factor) sont augmentées chez les fibroblastes autophagiques. L’inhibition de l’expression du CTGF par interférence génique prévient la différenciation myofibroblastique, démontrant l’importance de ce facteur pro-fibrotique pour la différenciation induite par l’autophagie. La phosphorylation de la kinase RPS6KB1/p70S6K, cible du complexe MTORC1, est abolie dans les fibroblastes autophagiques. La phosphorylation d’AKT à la Ser473, une cible du complexe MTORC2, diminue lors de la carence en sérum des fibroblastes mais est suivie d’une rephosphorylation après 2 jours. Ce résultat suggère la réactivation de MTORC2 lors d’une autophagie prolongée. Ceci a été vérifié par inhibition de l’autophagie dans les fibroblastes carencés en sérum. Les inhibiteurs de PtdIns3K et le siRNA ATG7 bloquent la rephosphorylation d’AKT. L’inhibition de la réactivation de MTORC2, et donc de la rephosphorylation d’AKT, est aussi obtenue par exposition des fibroblastes à la rapamycine, le Torin 1 ou par inhibition génique de RICTOR. Ces traitements inhibent l’augmentation de l’expression du CTGF ainsi que des marqueurs de différenciation et de sénescence, démontrant le rôle central joué par MTORC2 dans ces processus. Le stress oxydant peut induire la sénescence et la carence en sérum est connue pour augmenter la quantité de ROS (reactive oxygen species) dans les cellules. Afin d’investiguer le rôle des ROS dans la différenciation et la sénescence induites par l’autophagie, nous avons incubés les fibroblastes carencés en sérum en présence de N-acetyl-L-cysteine (NAC). Le NAC diminue la production de ROS, diminue les marqueurs d’autophagie, de sénescence et de différenciation myofibroblastique. Le NAC inhibe aussi la phosphorylation d’AKT Ser473. L’ensemble de ces résultats identifient les ROS en association avec une autophagie prolongée comme des nouveaux activateurs du complexe MTORC2. MTORC2 est central pour l’activation subséquente de la sénescence et de la différenciation myofibroblastique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’inflammation fait partie des processus réactionnels de défense dont dispose l’organisme en réponse aux agressions, assurant l’intégrité de l’hôte. En réponse au dommage tissulaire, plusieurs médiateurs inflammatoires interviennent dans le processus de l’inflammation. Lors de ces dommages, des signaux de dangers provenant de cellules endommagées sont relâchés dans l’environnement tissulaire, pouvant causer des dommages cellulaires et tissulaires. Les macrophages, tout comme d’autres cellules, peuvent être activés par ces signaux de danger, menant à la sécrétion de molécules telles que des cytokines et des chimiokines pouvant modifier le microenvironnement tissulaire. Les insultes au tissu sain peuvent entrainer la mort cellulaire telle que l’apoptose. Les molécules pouvant être relâchées lors de celle-ci contribuent au microenvironnement, notamment de par l’influence de celles-ci sur le macrophage. Parmi ces médiateurs, nous avons identifié le Milk Fat Globule-Epidermal growth factor 8 (MFG-E8), un acteur important dans la résolution de l’inflammation, comme étant relâché spécifiquement par les cellules apoptotiques. Nous avons émis l’hypothèse que le microenvironnement apoptotique tissulaire, via la relâche de MFG-E8, module le phénotype du macrophage, modifiant le microenvironnement, la réponse inflammatoire ainsi que le devenir de l’insulte tissulaire. Nos objectifs sont 1) de caractériser ce microenvironnement apoptotique tissulaire et la cinétique de relâche du MFG-E8 par les cellules apoptotiques, 2) d’en évaluer son rôle dans la modulation du phénotype du macrophage ainsi que 3) d’en étudier, in vivo, son influence sur l’environnement inflammatoire et le devenir tissulaire. Dans le premier article présenté, nous avons démontré que les cellules endothéliales apoptotiques relâchent le MFG-E8 de façon Caspase-3 dépendante. La stimulation des macrophages par l’environnement conditionné par les cellules endothéliales apoptotiques mène à l’adoption d’un profil macrophagien davantage anti-inflammatoire et moindrement pro-inflammatoire. Ce phénotype est réduit par l’inhibition de la Caspase-3 et il dépend de la présence de MFG-E8. De plus, le potentiel du MFG-E8 à la reprogrammation du macrophage pro-inflammatoire a été démontré via un modèle expérimental de péritonite. Ce changement phénotypique médié par MFG-E8 implique une signalisation STAT3. Ayant démontré que les cellules épithéliales apoptotiques, à l’instar des cellules endothéliales apoptotiques, relâchent elles aussi de façon apoptose-dépendante le MFG-E8, nous avons étudié plus exhaustivement un modèle in vivo riche en apoptose épithéliale, l’obstruction urétérale unilatérale. Dans ce deuxième article présenté, nous rapportons l’implication bénéfique de MFG-E8 dans ce modèle de pathologie rénale obstructive. Nous avons constaté que la présence ou l’administration de MFG-E8 réduit le dommage tissulaire et la fibrose. La protection conférée par MFG-E8 est médiée via la modulation de l’activation de l’inflammasome. De plus, nos résultats illustrent l’importance du phénotype anti-inflammatoire du macrophage médié par le MFG-E8 dans la régulation négative de l’activation de l’inflammasome rénal et du dommage tissulaire. Cette thèse présente la première description de la relâche Caspase-3-dépendante de MFG-E8 par les cellules apoptotiques. Elle démontre également l’importance du MFG-E8 dans le microenvironnement apoptotique inflammatoire dans l’atténuation du phénotype pro-inflammatoire du macrophage. De plus, nous avons démontré son rôle protecteur dans des modèles in vivo de transplantation aortique et de réparation tissulaire, de même que dans un modèle de maladie rénale chronique où nous avons montré que cette protection conférée par MFG-E8 est médiée par la régulation négative de l’inflammasome tissulaire. Nos résultats suggèrent ainsi que le MFG-E8 pourrait être considéré comme un interrupteur inflammatoire et ainsi comme une cible potentielle dans la modulation de maladies inflammatoires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le traitement chirurgical des anévrismes de l'aorte abdominale est de plus en plus remplacé par la réparation endovasculaire de l’anévrisme (« endovascular aneurysm repair », EVAR) en utilisant des endoprothèses (« stent-grafts », SGs). Cependant, l'efficacité de cette approche moins invasive est compromise par l'incidence de l'écoulement persistant dans l'anévrisme, appelé endofuites menant à une rupture d'anévrisme si elle n'est pas détectée. Par conséquent, une surveillance de longue durée par tomodensitométrie sur une base annuelle est nécessaire ce qui augmente le coût de la procédure EVAR, exposant le patient à un rayonnement ionisants et un agent de contraste néphrotoxique. Le mécanisme de rupture d'anévrisme secondaire à l'endofuite est lié à une pression du sac de l'anévrisme proche de la pression systémique. Il existe une relation entre la contraction ou l'expansion du sac et la pressurisation du sac. La pressurisation résiduelle de l'anévrisme aortique abdominale va induire une pulsation et une circulation sanguine à l'intérieur du sac empêchant ainsi la thrombose du sac et la guérison de l'anévrisme. L'élastographie vasculaire non-invasive (« non-invasive vascular elastography », NIVE) utilisant le « Lagrangian Speckle Model Estimator » (LSME) peut devenir une technique d'imagerie complémentaire pour le suivi des anévrismes après réparation endovasculaire. NIVE a la capacité de fournir des informations importantes sur l'organisation d'un thrombus dans le sac de l'anévrisme et sur la détection des endofuites. La caractérisation de l'organisation d'un thrombus n'a pas été possible dans une étude NIVE précédente. Une limitation de cette étude était l'absence d'examen tomodensitométrique comme étalon-or pour le diagnostic d'endofuites. Nous avons cherché à appliquer et optimiser la technique NIVE pour le suivi des anévrismes de l'aorte abdominale (AAA) après EVAR avec endoprothèse dans un modèle canin dans le but de détecter et caractériser les endofuites et l'organisation du thrombus. Des SGs ont été implantés dans un groupe de 18 chiens avec un anévrisme créé dans l'aorte abdominale. Des endofuites de type I ont été créés dans 4 anévrismes, de type II dans 13 anévrismes tandis qu’un anévrisme n’avait aucune endofuite. L'échographie Doppler (« Doppler ultrasound », DUS) et les examens NIVE ont été réalisés avant puis à 1 semaine, 1 mois, 3 mois et 6 mois après l’EVAR. Une angiographie, une tomodensitométrie et des coupes macroscopiques ont été réalisées au moment du sacrifice. Les valeurs de contrainte ont été calculées en utilisant l`algorithme LSME. Les régions d'endofuite, de thrombus frais (non organisé) et de thrombus solide (organisé) ont été identifiées et segmentées en comparant les résultats de la tomodensitométrie et de l’étude macroscopique. Les valeurs de contrainte dans les zones avec endofuite, thrombus frais et organisé ont été comparées. Les valeurs de contrainte étaient significativement différentes entre les zones d'endofuites, les zones de thrombus frais ou organisé et entre les zones de thrombus frais et organisé. Toutes les endofuites ont été clairement caractérisées par les examens d'élastographie. Aucune corrélation n'a été trouvée entre les valeurs de contrainte et le type d'endofuite, la pression de sac, la taille des endofuites et la taille de l'anévrisme.