2 resultados para TEMPERATURE-GRADIENTS
em Université de Montréal, Canada
Resumo:
Les hydrogels de polysaccharide sont des biomatériaux utilisés comme matrices à libération contrôlée de médicaments et comme structures modèles pour l’étude de nombreux systèmes biologiques dont les biofilms bactériens et les mucus. Dans tous les cas, le transport de médicaments ou de nutriments à l’intérieur d’une matrice d’hydrogel joue un rôle de premier plan. Ainsi, l’étude des propriétés de transport dans les hydrogels s’avère un enjeu très important au niveau de plusieurs applications. Dans cet ouvrage, le curdlan, un polysaccharide neutre d’origine bactérienne et formé d’unités répétitives β-D-(1→3) glucose, est utilisé comme hydrogel modèle. Le curdlan a la propriété de former des thermogels de différentes conformations selon la température à laquelle une suspension aqueuse est incubée. La caractérisation in situ de la formation des hydrogels de curdlan thermoréversibles et thermo-irréversibles a tout d’abord été réalisée par spectroscopie infrarouge à transformée de Fourier (FT-IR) en mode réflexion totale atténuée à température variable. Les résultats ont permis d’optimiser les conditions de gélation, menant ainsi à la formation reproductible des hydrogels. Les caractérisations structurales des hydrogels hydratés, réalisées par imagerie FT-IR, par microscopie électronique à balayage en mode environnemental (eSEM) et par microscopie à force atomique (AFM), ont permis de visualiser les différentes morphologies susceptibles d’influencer la diffusion d’analytes dans les gels. Nos résultats montrent que les deux types d’hydrogels de curdlan ont des architectures distinctes à l’échelle microscopique. La combinaison de la spectroscopie de résonance magnétique nucléaire (RMN) à gradients pulsés et de l’imagerie RMN a permis d’étudier l’autodiffusion et la diffusion mutuelle sur un même système dans des conditions expérimentales similaires. Nous avons observé que la diffusion des molécules dans les gels est ralentie par rapport à celle mesurée en solution aqueuse. Les mesures d’autodiffusion, effectuées sur une série d’analytes de diverses tailles dans les deux types d’hydrogels de curdlan, montrent que le coefficient d’autodiffusion relatif décroit en fonction de la taille de l’analyte. De plus, nos résultats suggèrent que l’équivalence entre les coefficients d’autodiffusion et de diffusion mutuelle dans les hydrogels de curdlan thermo-irréversibles est principalement due au fait que l’environnement sondé par les analytes durant une expérience d’autodiffusion est représentatif de celui exploré durant une expérience de diffusion mutuelle. Dans de telles conditions, nos résultats montrent que la RMN à gradients pulsés peut s’avérer une approche très avantageuse afin de caractériser des systèmes à libération contrôlée de médicaments. D’autres expériences de diffusion mutuelle, menées sur une macromolécule de dextran, montrent un coefficient de diffusion mutuelle inférieur au coefficient d’autodiffusion sur un même gel de curdlan. L’écart mesuré entre les deux modes de transport est attribué au volume différent de l’environnement sondé durant les deux mesures. Les coefficients d’autodiffusion et de diffusion mutuelle similaires, mesurés dans les deux types de gels de curdlan pour les différents analytes étudiés, suggèrent une influence limitée de l’architecture microscopique de ces gels sur leurs propriétés de transport. Il est conclu que les interactions affectant la diffusion des analytes étudiés dans les hydrogels de curdlan se situent à l’échelle moléculaire.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.