2 resultados para Systems evaluations

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il est connu que les problèmes d'ambiguïté de la langue ont un effet néfaste sur les résultats des systèmes de Recherche d'Information (RI). Toutefois, les efforts de recherche visant à intégrer des techniques de Désambiguisation de Sens (DS) à la RI n'ont pas porté fruit. La plupart des études sur le sujet obtiennent effectivement des résultats négatifs ou peu convaincants. De plus, des investigations basées sur l'ajout d'ambiguïté artificielle concluent qu'il faudrait une très haute précision de désambiguation pour arriver à un effet positif. Ce mémoire vise à développer de nouvelles approches plus performantes et efficaces, se concentrant sur l'utilisation de statistiques de cooccurrence afin de construire des modèles de contexte. Ces modèles pourront ensuite servir à effectuer une discrimination de sens entre une requête et les documents d'une collection. Dans ce mémoire à deux parties, nous ferons tout d'abord une investigation de la force de la relation entre un mot et les mots présents dans son contexte, proposant une méthode d'apprentissage du poids d'un mot de contexte en fonction de sa distance du mot modélisé dans le document. Cette méthode repose sur l'idée que des modèles de contextes faits à partir d'échantillons aléatoires de mots en contexte devraient être similaires. Des expériences en anglais et en japonais montrent que la force de relation en fonction de la distance suit généralement une loi de puissance négative. Les poids résultant des expériences sont ensuite utilisés dans la construction de systèmes de DS Bayes Naïfs. Des évaluations de ces systèmes sur les données de l'atelier Semeval en anglais pour la tâche Semeval-2007 English Lexical Sample, puis en japonais pour la tâche Semeval-2010 Japanese WSD, montrent que les systèmes ont des résultats comparables à l'état de l'art, bien qu'ils soient bien plus légers, et ne dépendent pas d'outils ou de ressources linguistiques. La deuxième partie de ce mémoire vise à adapter les méthodes développées à des applications de Recherche d'Information. Ces applications ont la difficulté additionnelle de ne pas pouvoir dépendre de données créées manuellement. Nous proposons donc des modèles de contextes à variables latentes basés sur l'Allocation Dirichlet Latente (LDA). Ceux-ci seront combinés à la méthodes de vraisemblance de requête par modèles de langue. En évaluant le système résultant sur trois collections de la conférence TREC (Text REtrieval Conference), nous observons une amélioration proportionnelle moyenne de 12% du MAP et 23% du GMAP. Les gains se font surtout sur les requêtes difficiles, augmentant la stabilité des résultats. Ces expériences seraient la première application positive de techniques de DS sur des tâches de RI standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.