4 resultados para Synthesis of Complexes,

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'étude suivante décrit la synthèse des ligands nacnacxylH, nacnacBnH, nacnacR,RH et nacnacCyH en utilisant une méthode générale qui implique des rendements élevés et des coûts raisonnables, la complexation de ces ligands au Zr, la caractérisation de ces complexes et l’investigation de leurs réactivités. Les complexes de zirconium ont été obtenus en utilisant deux méthodes synthétiques principales : la première consiste en traitement du sel de lithium du ligand avec le ZrCl4. La seconde est la réaction du ligand neutre avec les complexes d’alkyl-zirconium(IV) par protonation de l'alkyle coordonné. Le ligand adopte deux modes de coordination avec le Zr. Une coordination 2 est observée dans les complexes octaèdriques contenant un ou deux ligands nacnac. En présence d'un autre ligand ayant une coordonnation 5, par exemple Cp ou Ind, le ligand nacnac se trouve en coordination x avec le centre métallique de zirconium. En solution, les complexes obtenus de (nacnac)2ZrX2 montrent un comportement dynamique via un « Bailar-twist » et les paramètres d'activation de cette isomérisation ont été obtenus. Le complexe octaèdrique (nacnacBn)2ZrCl2, 2c, n'a pas montré de réactivité dans la carbozirconation et son alkylation n'était pas possible par l’échange des chlorures avec les alkyles. L’analogue dimethylé (nacnacBn)2ZrMe2, 2d, peut être préparé par alkylation du ZrCl4 avant la complexation du ligand. Ce dernier a été prouvé aussi de ne pas être réactif dans la carbozirconation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le présent mémoire décrit la synthèse et l’utilité de complexes Cu-NHC. En premier lieu, la synthèse de complexes de cuivre porteurs de ligand(s) de type carbène-N-hétérocyclique (NHC) via une génération décarboxylative de carbènes sera présentée. En effet, de précédents rapports font état de l’utilisation de carboxylates d’imidazol(in)ium en tant que précurseurs carbéniques sous conditions thermolytiques. Ainsi, la présente étude montre l’utilisation de ces espèces zwitterioniques pour la synthèse de complexes de cuivre(I) mono- et bis-NHC comportant divers substituants et contre-ions. Une seconde partie du projet se concentrera sur l’évaluation de complexes Cu-NHC en tant que catalyseurs pour la synthèse de 2,2’-binaphtols via une réaction de couplage oxydatif de naphtols. L’objectif de ce projet de recherche est d’étudier les effets de variations structurales de différents complexes Cu-NHC afin de construire un processus catalytique plus efficace. Les effets de la structure du catalyseur sur la réaction de couplage ont été évalués en variant son contre-ion, le nombre de ligands NHC se coordonnant au cuivre, ainsi que la nature des substituants du ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé: Dans le but de préparer des complexes de Zr pour la catalyse homogène de la polymérisation des lactides et de l’hydroamination des olefines, l’elaboration et l’optimisation d’une méthode systématique et efficace de synthèse des ligands dikétimines ayant différents substituants alkyles (R) à la position N,N’ a été realisée. Des dikétimines (nacnacRH) symétriques ont été obtenus avec une pureté de plus de 95 % et un rendement de 65 % lorsque R = Me et des rendements allant de 80 à 95 % lorsque le groupe R = n-Pr, i-Pr, i-Bu, Bu, Cy et (+)-CH(Me)Ph. La synthèse des dikétimines ayant des substituants N-alkyls différents, dite asymétriques, donne toujours un mélange statistique de trois ligands: nacnacR,R’H, nacnacR,RH et nacnacR’,R’H qui n’ont pu être separés. Seuls les dikétimines asymétriques avec un substituant N-alkyl et un autre N-aryl (nacnacR,ArH) ont été obtenus avec des rendements plus élevés que celui du mélange statistique. Par la suite, la complexation de ces ligands bidentés au Zr, la caractérisation de ces complexes et l’investigation de la réactivité ont été étudiés. Les complexes de Zr de type (nacnacR)2ZrCl2 ont été obtenus par deux voies de synthèse principales: la première consiste à traiter le sel de lithium du ligand avec le ZrCl4. La seconde est la réaction du ligand avec les complexes neutres d’alkyl-zirconium(IV) par protonation de l'alkyle coordonné. En solution, les complexes obtenus de (nacnacR)2ZrX2 possèdent un comportement dynamique via un « Bailar-twist » et les paramètres d'activation de cette isomérisation ont été calculés. Le complexe octaèdrique (nacnacBn)2ZrCl2 n'est pas réactif dans la carbozirconation et son alkylation n'était pas possible par l’échange des chlorures avec les alkyles. L’analogue diméthylé (nacnacBn)2ZrMe2 peut être préparé par alkylation du ZrCl4 avant la complexation du ligand. On a également observé que ce dernier n’est pas réactif dans la carbozirconation. L‘analogue diéthoxyde (nacnacBn)2Zr(OEt)2 est obtenu par échange des diméthyles avec les éthoxydes. La polymérisation du lactide avec celui-ci en tant que précurseur est relativement lente et ne peut être effectuée que dans le monomère fondu. Par conséquent, pour résoudre les problèmes rencontrés avec les complexes de zirconium (dikétiminates non-pontés), un ligand dikétimines pontés par le diaminocyclohexane, (±)-C6H10(nacnacXylH)2, LH2, (Xyl = 2,6-diméthylphényle) a été préparé. La complexation de ce ligand tetradenté au metal a été réalisée par deux voies de synthèse; la première est la réaction du sel de lithium de ce ligand avec le ZrCl4(THF)2. La deuxième est la déprotonation du ligand neutre avec le Zr(NMe2)4 et l’élimination du diméthylamine. Des complexes du type: (±)-C6H10(nacnacXylH)2ZrX2 avec X = Cl, NMe2 ont été obtenus. Les ligands de chlorure sont dans ce cas facilement remplaçables par des éthoxydes ou des méthyles. On a observé l’activité la plus élevée jamais observée pour un complexe d’un métal du groupe 4 avec le complexe de (±)-C6H10(nacnacXylH)2Zr(OEt)2 dans la polymérisation de lactide. L'étude cinétique a montré que la loi de vitesse est du premier ordre en catalyseur et en monomère et la constante de vitesse est k = 14 (1) L mol-1 s-1. L'analyse des polymères a montré l’obtention de masses moléculaires faibles et l’abscence de stéréocontrôle. La réaction de (±)-C6H10(nacnacXylH)2ZrCl2 avec le triflate d’argent donne le (±)-C6H10(nacnacXylH)2Zr(OTf)2. Le complexe bis-triflate obtenu possède une activité catalytique elevée pour les additions du type aza-Michael. L’utilisation du R,R-C6H10(nacnacXylH)2Zr(OTf)2 énantiopur comme catalyseur, dans les additions du type aza-Michael asymétriques donne le produit desiré avec un excès énantiomérique de 19%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les ligands de carbènes N-hétérocycliques (NHC) qui possèdent une symétrie C1 attirent beaucoup l’attention dans la littérature. Le présent projet de recherche propose de synthétiser une nouvelle série de ligands NHC C1-symétriques avec deux groupements N-alkyles qui exploitent un relais chiral. Un protocole modulaire et efficace pour la synthèse des sels d’imidazolium chiraux qui servent comme préligands pour les NHC a été développé. Quelques-uns de ces nouveaux ligands ont été installés sur le cuivre et de l’or, créant de nouveaux complexes chiraux. Les nouveaux complexes à base de cuivre ont été évalués comme catalyseurs pour le couplage oxydatif de 2-naphthols. Les ligands C1-symmétriques ont fourni des meilleurs rendements que les ligands C2-symmétriques. Au cours de l’optimisation, des additifs ont été évalués; les additifs à base de pyridine ont fourni des énantiosélectivités modérées tandis que les additifs à base de malonate ont donné des meilleurs rendements de la réaction de couplage oxydatif. Ultérieurement, les additifs à base de malonate ont été appliqués envers l’hétérocouplage de 2-naphthols. Le partenaire de couplage qui est riche en électrons est normalement en grand excès à cause de sa tendance à dégrader. Avec le bénéfice de l’additif, les deux partenaires de couplage peuvent être utilisés dans des quantités équivalentes. La découverte de l’effet des additifs a permis le développement d’un protocole général pour l’hétérocouplage de 2-naphthols.