63 resultados para Superintégrabilité quantique

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce travail de maîtrise a mené à la rédaction d'un article (Physical Review A 80, 062319 (2009)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La notion de causalité repose sur une grande prétention : rendre intelligibles l’origine, la constitution et le devenir du monde. On lui attribue donc une portée universelle : tout événement a une cause. La majeure partie des débats philosophiques sur la causalité a concerné nos jugements intuitifs selon deux types de conceptions causales, soit la conception probabiliste et la conception processuelle. Chacune d’elles fait face à d’importants obstacles conceptuels dont les principaux sont la préemption, l’inaboutissement (fizzling), la déconnexion et la méconnexion. Or, afin de rendre compte de certains phénomènes physiques et d’éviter le problème classique des régularités fallacieuses – comme quoi, par exemple, la chute du baromètre ne saurait être la cause de la tempête – l’approche processuelle est généralement privilégiée. Max Kistler (1998 ; 2006), entre autres, offre ainsi une théorie causale processuelle basée sur la notion de transfert d’énergie. Cependant, les cas paradigmatiques d’intrication quantique imposent de sérieuses contraintes aux approches processuelles, dont celle de Kistler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.