22 resultados para Stochastic sequences.

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that about 20% of melanomas express major histocompatibility complex (MHC) class II, it is plausible that concomitant antigenic presentation by MHC class I and class II complexes shapes positive (helper T cells) or negative (regulatory T cells) anti-tumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we demonstrated that the gp100 putative amino-terminal signal sequence and the last 70 residues in carboxy-terminus, are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+ endosomal/MIIC. Gp100-targeting sequences were characterized by deleting different sections in the carboxy-terminus (residues 590 to 661). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in carboxy-terminus resulted in decreased MHC class II presentation, without effects on MHC class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100-targeting sequences to mobilize the green fluorescent protein (GFP) to endosomal compartments, and to allow MHC class II and class I presentation of minimal endogenous epitopes. Thus, we concluded that these specific sequences are MIIC targeting motifs. Consequently, these sequences could be included in expression cassettes for endogenously expressed tumor or viral antigens to promote MHC class II and class I presentation and optimize in vivo T cell responses, or as an in vitro tool for characterization of new MHC class II epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Département de Biochimie, Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper investigates the pricing of derivative securities with calendar-time maturities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper prepared for the Handbook of Statistics (Vol.14: Statistical Methods in Finance), surveys the subject of stochastic volatility. the following subjects are covered: volatility in financial markets (instantaneous volatility of asset returns, implied volatilities in option prices and related stylized facts), statistical modelling in discrete and continuous time and, finally, statistical inference (methods of moments, quasi-maximum likelihood, likelihood-based and bayesian methods and indirect inference).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’explosion du nombre de séquences permet à la phylogénomique, c’est-à-dire l’étude des liens de parenté entre espèces à partir de grands alignements multi-gènes, de prendre son essor. C’est incontestablement un moyen de pallier aux erreurs stochastiques des phylogénies simple gène, mais de nombreux problèmes demeurent malgré les progrès réalisés dans la modélisation du processus évolutif. Dans cette thèse, nous nous attachons à caractériser certains aspects du mauvais ajustement du modèle aux données, et à étudier leur impact sur l’exactitude de l’inférence. Contrairement à l’hétérotachie, la variation au cours du temps du processus de substitution en acides aminés a reçu peu d’attention jusqu’alors. Non seulement nous montrons que cette hétérogénéité est largement répandue chez les animaux, mais aussi que son existence peut nuire à la qualité de l’inférence phylogénomique. Ainsi en l’absence d’un modèle adéquat, la suppression des colonnes hétérogènes, mal gérées par le modèle, peut faire disparaître un artéfact de reconstruction. Dans un cadre phylogénomique, les techniques de séquençage utilisées impliquent souvent que tous les gènes ne sont pas présents pour toutes les espèces. La controverse sur l’impact de la quantité de cellules vides a récemment été réactualisée, mais la majorité des études sur les données manquantes sont faites sur de petits jeux de séquences simulées. Nous nous sommes donc intéressés à quantifier cet impact dans le cas d’un large alignement de données réelles. Pour un taux raisonnable de données manquantes, il appert que l’incomplétude de l’alignement affecte moins l’exactitude de l’inférence que le choix du modèle. Au contraire, l’ajout d’une séquence incomplète mais qui casse une longue branche peut restaurer, au moins partiellement, une phylogénie erronée. Comme les violations de modèle constituent toujours la limitation majeure dans l’exactitude de l’inférence phylogénétique, l’amélioration de l’échantillonnage des espèces et des gènes reste une alternative utile en l’absence d’un modèle adéquat. Nous avons donc développé un logiciel de sélection de séquences qui construit des jeux de données reproductibles, en se basant sur la quantité de données présentes, la vitesse d’évolution et les biais de composition. Lors de cette étude nous avons montré que l’expertise humaine apporte pour l’instant encore un savoir incontournable. Les différentes analyses réalisées pour cette thèse concluent à l’importance primordiale du modèle évolutif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal