7 resultados para Statistical parameters

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans le contexte de la caractérisation des tissus mammaires, on peut se demander ce que l’examen d’un attribut en échographie quantitative (« quantitative ultrasound » - QUS) d’un milieu diffusant (tel un tissu biologique mou) pendant la propagation d’une onde de cisaillement ajoute à son pouvoir discriminant. Ce travail présente une étude du comportement variable temporel de trois paramètres statistiques (l’intensité moyenne, le paramètre de structure et le paramètre de regroupement des diffuseurs) d’un modèle général pour l’enveloppe écho de l’onde ultrasonore rétrodiffusée (c.-à-d., la K-distribution homodyne) sous la propagation des ondes de cisaillement. Des ondes de cisaillement transitoires ont été générés en utilisant la mèthode d’ imagerie de cisaillement supersonique ( «supersonic shear imaging » - SSI) dans trois fantômes in-vitro macroscopiquement homogènes imitant le sein avec des propriétés mécaniques différentes, et deux fantômes ex-vivo hétérogénes avec tumeurs de souris incluses dans un milieu environnant d’agargélatine. Une comparaison de l’étendue des trois paramètres de la K-distribution homodyne avec et sans propagation d’ondes de cisaillement a montré que les paramètres étaient significativement (p < 0,001) affectès par la propagation d’ondes de cisaillement dans les expériences in-vitro et ex-vivo. Les résultats ont également démontré que la plage dynamique des paramétres statistiques au cours de la propagation des ondes de cisaillement peut aider à discriminer (avec p < 0,001) les trois fantômes homogènes in-vitro les uns des autres, ainsi que les tumeurs de souris de leur milieu environnant dans les fantômes hétérogénes ex-vivo. De plus, un modéle de régression linéaire a été appliqué pour corréler la plage de l’intensité moyenne sous la propagation des ondes de cisaillement avec l’amplitude maximale de déplacement du « speckle » ultrasonore. La régression linéaire obtenue a été significative : fantômes in vitro : R2 = 0.98, p < 0,001 ; tumeurs ex-vivo : R2 = 0,56, p = 0,013 ; milieu environnant ex-vivo : R2 = 0,59, p = 0,009. En revanche, la régression linéaire n’a pas été aussi significative entre l’intensité moyenne sans propagation d’ondes de cisaillement et les propriétés mécaniques du milieu : fantômes in vitro : R2 = 0,07, p = 0,328, tumeurs ex-vivo : R2 = 0,55, p = 0,022 ; milieu environnant ex-vivo : R2 = 0,45, p = 0,047. Cette nouvelle approche peut fournir des informations supplémentaires à l’échographie quantitative statistique traditionnellement réalisée dans un cadre statique (c.-à-d., sans propagation d’ondes de cisaillement), par exemple, dans le contexte de l’imagerie ultrasonore en vue de la classification du cancer du sein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of measuring the uncertainty of CGE (or RBC)-type model simulations associated with parameter uncertainty. We describe two approaches for building confidence sets on model endogenous variables. The first one uses a standard Wald-type statistic. The second approach assumes that a confidence set (sampling or Bayesian) is available for the free parameters, from which confidence sets are derived by a projection technique. The latter has two advantages: first, confidence set validity is not affected by model nonlinearities; second, we can easily build simultaneous confidence intervals for an unlimited number of variables. We study conditions under which these confidence sets take the form of intervals and show they can be implemented using standard methods for solving CGE models. We present an application to a CGE model of the Moroccan economy to study the effects of policy-induced increases of transfers from Moroccan expatriates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of accessing the uncertainty of calibrated parameters in computable general equilibrium (CGE) models through the construction of confidence sets (or intervals) for these parameters. We study two different setups under which this can be done.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.