3 resultados para Statistical distribution

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le but de ce mémoire de maîtrise est de décrire les propriétés de la loi double Pareto-lognormale, de montrer comment on peut introduire des variables explicatives dans le modèle et de présenter son large potentiel d'applications dans le domaine de la science actuarielle et de la finance. Tout d'abord, nous donnons la définition de la loi double Pareto-lognormale et présentons certaines de ses propriétés basées sur les travaux de Reed et Jorgensen (2004). Les paramètres peuvent être estimés en utilisant la méthode des moments ou le maximum de vraisemblance. Ensuite, nous ajoutons une variable explicative à notre modèle. La procédure d'estimation des paramètres de ce mo-\\dèle est également discutée. Troisièmement, des applications numériques de notre modèle sont illustrées et quelques tests statistiques utiles sont effectués.