4 resultados para Spin axis

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les transitions de spin provoquent des changements de propriétés physiques des complexes de métaux du bloc d les subissant, notamment de leur structure et propriétés spectroscopiques. Ce mémoire porte sur la spectroscopie Raman de composés du fer(II) et du fer(III), pour lesquels on induit une transition de spin par variation de la température ou de la pression. Trois complexes de fer(II) de type FeN4(NCS)2 avec des comportements de transition de spin différents ont été étudiés : Fe(Phen)2(NCS)2 (Phen : 1,10-Phénanthroline), Fe(Btz)2(NCS)2 (Btz : 2,2’-bi-4,5-dihydrothiazine) et Fe(pyridine)4(NCS)2. Un décalage de l’ordre de 50 cm-1 est observable pour la fréquence d’étirement C-N du ligand thiocyanate des complexes FeN4(NCS)2, lors de la transition de spin induite par variation de la température ou de la pression. Il est possible d’utiliser cette variation de fréquence afin de tracer un profil de transition. Quatre complexes isomères de type FeL222(CN)2 (L222 : 2,13- diméthyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadéca-1(18),2,12,14,16-pentaène) ont également été étudiés. Un taux de décalage de l’ordre d’environ 0,03 cm-1/K est observé pour plusieurs bandes du complexe FeL222(CN)2. La bande à 1415 cm-1 disparaît à plus haute température au profit d’une bande à 1400 cm-1. Pour le complexe de chiralité R,R’, les bandes à 1008 cm-1 et 1140 cm-1 se déplacent vers des fréquences plus élevées à partir de 223 K. Les transitions de spin sont observées dans certains complexes de fer(III). Dans cette famille de composés, le complexe Fe(EtDTC)3 (EtDTC : N,N-diéthyldithiocarbamate) a été étudié . Aucun changement n’a été observé dans l’intensité des bandes d’étirement fer-soufre sur les spectres à température variable. Cependant, la bande Fe-S associée à la forme bas-spin à 530 cm-1 augmente en intensité au profit de la bande associée à la forme haut-spin à 350 cm-1 lors des mesures à haute pression, passant d’un rapport d’amplitude de 50% à pression ambiante à 80% à 21 kbar. Un dédoublement de la bande d’étirement C-N du ligand dithiocarbamate à 1495 cm-1 est également observé à des pressions supérieures à 5 kbar. Une comparaison des changements des fréquences de vibration de tous les complexes est effectuée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus. Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans cette thèse, nous présentons quelques analyses théoriques récentes ainsi que des observations expérimentales de l’effet tunnel quantique macroscopique et des tran- sitions de phase classique-quantique dans le taux d’échappement des systèmes de spins élevés. Nous considérons les systèmes de spin biaxial et ferromagnétiques. Grâce à l’approche de l’intégral de chemin utilisant les états cohérents de spin exprimés dans le système de coordonnées, nous calculons l’interférence des phases quantiques et leur distribution énergétique. Nous présentons une exposition claire de l’effet tunnel dans les systèmes antiferromagnétiques en présence d’un couplage d’échange dimère et d’une anisotropie le long de l’axe de magnétisation aisé. Nous obtenons l’énergie et la fonc- tion d’onde de l’état fondamentale ainsi que le premier état excité pour les systèmes de spins entiers et demi-entiers impairs. Nos résultats sont confirmés par un calcul utilisant la théorie des perturbations à grand ordre et avec la méthode de l’intégral de chemin qui est indépendant du système de coordonnées. Nous présentons aussi une explica- tion claire de la méthode du potentiel effectif, qui nous laisse faire une application d’un système de spin quantique vers un problème de mécanique quantique d’une particule. Nous utilisons cette méthode pour analyser nos modèles, mais avec la contrainte d’un champ magnétique externe ajouté. La méthode nous permet de considérer les transitions classiques-quantique dans le taux d’échappement dans ces systèmes. Nous obtenons le diagramme de phases ainsi que les températures critiques du passage entre les deux régimes. Nous étendons notre analyse à une chaine de spins d’Heisenberg antiferro- magnétique avec une anisotropie le long d’un axe pour N sites, prenant des conditions frontière périodiques. Pour N paire, nous montrons que l’état fondamental est non- dégénéré et donné par la superposition des deux états de Néel. Pour N impair, l’état de Néel contient un soliton, et, car la position du soliton est indéterminée, l’état fondamen- tal est N fois dégénéré. Dans la limite perturbative pour l’interaction d’Heisenberg, les fluctuations quantiques lèvent la dégénérescence et les N états se réorganisent dans une bande. Nous montrons qu’à l’ordre 2s, où s est la valeur de chaque spin dans la théorie des perturbations dégénérées, la bande est formée. L’état fondamental est dégénéré pour s entier, mais deux fois dégénéré pour s un demi-entier impair, comme prévu par le théorème de Kramer