2 resultados para Speech Processing
em Université de Montréal, Canada
Resumo:
Dans de nombreux comportements qui reposent sur le rappel et la production de séquences, des groupements temporels émergent spontanément, créés par des délais ou des allongements. Ce « chunking » a été observé tant chez les humains que chez certains animaux et plusieurs auteurs l’attribuent à un processus général de chunking perceptif qui est conforme à la capacité de la mémoire à court terme. Cependant, aucune étude n’a établi comment ce chunking perceptif s’applique à la parole. Nous présentons une recension de la littérature qui fait ressortir certains problèmes critiques qui ont nui à la recherche sur cette question. C’est en revoyant ces problèmes qu’on propose une démonstration spécifique du chunking perceptif de la parole et de l’effet de ce processus sur la mémoire immédiate (ou mémoire de travail). Ces deux thèmes de notre thèse sont présentés séparément dans deux articles. Article 1 : The perceptual chunking of speech: a demonstration using ERPs Afin d’observer le chunking de la parole en temps réel, nous avons utilisé un paradigme de potentiels évoqués (PÉ) propice à susciter la Closure Positive Shift (CPS), une composante associée, entre autres, au traitement de marques de groupes prosodiques. Nos stimuli consistaient en des énoncés et des séries de syllabes sans sens comprenant des groupes intonatifs et des marques de groupements temporels qui pouvaient concorder, ou non, avec les marques de groupes intonatifs. Les analyses démontrent que la CPS est suscitée spécifiquement par les allongements marquant la fin des groupes temporels, indépendamment des autres variables. Notons que ces marques d’allongement, qui apparaissent universellement dans la langue parlée, créent le même type de chunking que celui qui émerge lors de l’apprentissage de séquences par des humains et des animaux. Nos résultats appuient donc l’idée que l’auditeur chunk la parole en groupes temporels et que ce chunking perceptif opère de façon similaire avec des comportements verbaux et non verbaux. Par ailleurs, les observations de l’Article 1 remettent en question des études où on associe la CPS au traitement de syntagmes intonatifs sans considérer les effets de marques temporels. Article 2 : Perceptual chunking and its effect on memory in speech processing:ERP and behavioral evidence Nous avons aussi observé comment le chunking perceptif d’énoncés en groupes temporels de différentes tailles influence la mémoire immédiate d’éléments entendus. Afin d’observer ces effets, nous avons utilisé des mesures comportementales et des PÉ, dont la composante N400 qui permettait d’évaluer la qualité de la trace mnésique d’éléments cibles étendus dans des groupes temporels. La modulation de l’amplitude relative de la N400 montre que les cibles présentées dans des groupes de 3 syllabes ont bénéficié d’une meilleure mise en mémoire immédiate que celles présentées dans des groupes plus longs. D’autres mesures comportementales et une analyse de la composante P300 ont aussi permis d’isoler l’effet de la position du groupe temporel (dans l’énoncé) sur les processus de mise en mémoire. Les études ci-dessus sont les premières à démontrer le chunking perceptif de la parole en temps réel et ses effets sur la mémoire immédiate d’éléments entendus. Dans l’ensemble, nos résultats suggèrent qu’un processus général de chunking perceptif favorise la mise en mémoire d’information séquentielle et une interprétation de la parole « chunk par chunk ».
Resumo:
En apprentissage automatique, domaine qui consiste à utiliser des données pour apprendre une solution aux problèmes que nous voulons confier à la machine, le modèle des Réseaux de Neurones Artificiels (ANN) est un outil précieux. Il a été inventé voilà maintenant près de soixante ans, et pourtant, il est encore de nos jours le sujet d'une recherche active. Récemment, avec l'apprentissage profond, il a en effet permis d'améliorer l'état de l'art dans de nombreux champs d'applications comme la vision par ordinateur, le traitement de la parole et le traitement des langues naturelles. La quantité toujours grandissante de données disponibles et les améliorations du matériel informatique ont permis de faciliter l'apprentissage de modèles à haute capacité comme les ANNs profonds. Cependant, des difficultés inhérentes à l'entraînement de tels modèles, comme les minima locaux, ont encore un impact important. L'apprentissage profond vise donc à trouver des solutions, en régularisant ou en facilitant l'optimisation. Le pré-entraînnement non-supervisé, ou la technique du ``Dropout'', en sont des exemples. Les deux premiers travaux présentés dans cette thèse suivent cette ligne de recherche. Le premier étudie les problèmes de gradients diminuants/explosants dans les architectures profondes. Il montre que des choix simples, comme la fonction d'activation ou l'initialisation des poids du réseaux, ont une grande influence. Nous proposons l'initialisation normalisée pour faciliter l'apprentissage. Le second se focalise sur le choix de la fonction d'activation et présente le rectifieur, ou unité rectificatrice linéaire. Cette étude a été la première à mettre l'accent sur les fonctions d'activations linéaires par morceaux pour les réseaux de neurones profonds en apprentissage supervisé. Aujourd'hui, ce type de fonction d'activation est une composante essentielle des réseaux de neurones profonds. Les deux derniers travaux présentés se concentrent sur les applications des ANNs en traitement des langues naturelles. Le premier aborde le sujet de l'adaptation de domaine pour l'analyse de sentiment, en utilisant des Auto-Encodeurs Débruitants. Celui-ci est encore l'état de l'art de nos jours. Le second traite de l'apprentissage de données multi-relationnelles avec un modèle à base d'énergie, pouvant être utilisé pour la tâche de désambiguation de sens.