3 resultados para Solution Space
em Université de Montréal, Canada
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
La gestion des ressources, équipements, équipes de travail, et autres, devrait être prise en compte lors de la conception de tout plan réalisable pour le problème de conception de réseaux de services. Cependant, les travaux de recherche portant sur la gestion des ressources et la conception de réseaux de services restent limités. La présente thèse a pour objectif de combler cette lacune en faisant l’examen de problèmes de conception de réseaux de services prenant en compte la gestion des ressources. Pour ce faire, cette thèse se décline en trois études portant sur la conception de réseaux. La première étude considère le problème de capacitated multi-commodity fixed cost network design with design-balance constraints(DBCMND). La structure multi-produits avec capacité sur les arcs du DBCMND, de même que ses contraintes design-balance, font qu’il apparaît comme sous-problème dans de nombreux problèmes reliés à la conception de réseaux de services, d’où l’intérêt d’étudier le DBCMND dans le contexte de cette thèse. Nous proposons une nouvelle approche pour résoudre ce problème combinant la recherche tabou, la recomposition de chemin, et une procédure d’intensification de la recherche dans une région particulière de l’espace de solutions. Dans un premier temps la recherche tabou identifie de bonnes solutions réalisables. Ensuite la recomposition de chemin est utilisée pour augmenter le nombre de solutions réalisables. Les solutions trouvées par ces deux méta-heuristiques permettent d’identifier un sous-ensemble d’arcs qui ont de bonnes chances d’avoir un statut ouvert ou fermé dans une solution optimale. Le statut de ces arcs est alors fixé selon la valeur qui prédomine dans les solutions trouvées préalablement. Enfin, nous utilisons la puissance d’un solveur de programmation mixte en nombres entiers pour intensifier la recherche sur le problème restreint par le statut fixé ouvert/fermé de certains arcs. Les tests montrent que cette approche est capable de trouver de bonnes solutions aux problèmes de grandes tailles dans des temps raisonnables. Cette recherche est publiée dans la revue scientifique Journal of heuristics. La deuxième étude introduit la gestion des ressources au niveau de la conception de réseaux de services en prenant en compte explicitement le nombre fini de véhicules utilisés à chaque terminal pour le transport de produits. Une approche de solution faisant appel au slope-scaling, la génération de colonnes et des heuristiques basées sur une formulation en cycles est ainsi proposée. La génération de colonnes résout une relaxation linéaire du problème de conception de réseaux, générant des colonnes qui sont ensuite utilisées par le slope-scaling. Le slope-scaling résout une approximation linéaire du problème de conception de réseaux, d’où l’utilisation d’une heuristique pour convertir les solutions obtenues par le slope-scaling en solutions réalisables pour le problème original. L’algorithme se termine avec une procédure de perturbation qui améliore les solutions réalisables. Les tests montrent que l’algorithme proposé est capable de trouver de bonnes solutions au problème de conception de réseaux de services avec un nombre fixe des ressources à chaque terminal. Les résultats de cette recherche seront publiés dans la revue scientifique Transportation Science. La troisième étude élargie nos considérations sur la gestion des ressources en prenant en compte l’achat ou la location de nouvelles ressources de même que le repositionnement de ressources existantes. Nous faisons les hypothèses suivantes: une unité de ressource est nécessaire pour faire fonctionner un service, chaque ressource doit retourner à son terminal d’origine, il existe un nombre fixe de ressources à chaque terminal, et la longueur du circuit des ressources est limitée. Nous considérons les alternatives suivantes dans la gestion des ressources: 1) repositionnement de ressources entre les terminaux pour tenir compte des changements de la demande, 2) achat et/ou location de nouvelles ressources et leur distribution à différents terminaux, 3) externalisation de certains services. Nous présentons une formulation intégrée combinant les décisions reliées à la gestion des ressources avec les décisions reliées à la conception des réseaux de services. Nous présentons également une méthode de résolution matheuristique combinant le slope-scaling et la génération de colonnes. Nous discutons des performances de cette méthode de résolution, et nous faisons une analyse de l’impact de différentes décisions de gestion des ressources dans le contexte de la conception de réseaux de services. Cette étude sera présentée au XII International Symposium On Locational Decision, en conjonction avec XXI Meeting of EURO Working Group on Locational Analysis, Naples/Capri (Italy), 2014. En résumé, trois études différentes sont considérées dans la présente thèse. La première porte sur une nouvelle méthode de solution pour le "capacitated multi-commodity fixed cost network design with design-balance constraints". Nous y proposons une matheuristique comprenant la recherche tabou, la recomposition de chemin, et l’optimisation exacte. Dans la deuxième étude, nous présentons un nouveau modèle de conception de réseaux de services prenant en compte un nombre fini de ressources à chaque terminal. Nous y proposons une matheuristique avancée basée sur la formulation en cycles comprenant le slope-scaling, la génération de colonnes, des heuristiques et l’optimisation exacte. Enfin, nous étudions l’allocation des ressources dans la conception de réseaux de services en introduisant des formulations qui modèlent le repositionnement, l’acquisition et la location de ressources, et l’externalisation de certains services. À cet égard, un cadre de solution slope-scaling développé à partir d’une formulation en cycles est proposé. Ce dernier comporte la génération de colonnes et une heuristique. Les méthodes proposées dans ces trois études ont montré leur capacité à trouver de bonnes solutions.