26 resultados para Sequential error ratio
em Université de Montréal, Canada
Advances in therapeutic risk management through signal detection and risk minimisation tool analyses
Resumo:
Les quatre principales activités de la gestion de risque thérapeutique comportent l’identification, l’évaluation, la minimisation, et la communication du risque. Ce mémoire aborde les problématiques liées à l’identification et à la minimisation du risque par la réalisation de deux études dont les objectifs sont de: 1) Développer et valider un outil de « data mining » pour la détection des signaux à partir des banques de données de soins de santé du Québec; 2) Effectuer une revue systématique afin de caractériser les interventions de minimisation de risque (IMR) ayant été implantées. L’outil de détection de signaux repose sur la méthode analytique du quotient séquentiel de probabilité (MaxSPRT) en utilisant des données de médicaments délivrés et de soins médicaux recueillis dans une cohorte rétrospective de 87 389 personnes âgées vivant à domicile et membres du régime d’assurance maladie du Québec entre les années 2000 et 2009. Quatre associations « médicament-événement indésirable (EI) » connues et deux contrôles « négatifs » ont été utilisés. La revue systématique a été faite à partir d’une revue de la littérature ainsi que des sites web de six principales agences réglementaires. La nature des RMIs ont été décrites et des lacunes de leur implémentation ont été soulevées. La méthode analytique a mené à la détection de signaux dans l'une des quatre combinaisons médicament-EI. Les principales contributions sont: a) Le premier outil de détection de signaux à partir des banques de données administratives canadiennes; b) Contributions méthodologiques par la prise en compte de l'effet de déplétion des sujets à risque et le contrôle pour l'état de santé du patient. La revue a identifié 119 IMRs dans la littérature et 1,112 IMRs dans les sites web des agences réglementaires. La revue a démontré qu’il existe une augmentation des IMRs depuis l’introduction des guides réglementaires en 2005 mais leur efficacité demeure peu démontrée.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Rapport de recherche
Resumo:
This paper proposes an explanation for why efficient reforms are not carried out when losers have the power to block their implementation, even though compensating them is feasible. We construct a signaling model with two-sided incomplete information in which a government faces the task of sequentially implementing two reforms by bargaining with interest groups. The organization of interest groups is endogenous. Compensations are distortionary and government types differ in the concern about distortions. We show that, when compensations are allowed to be informative about the government’s type, there is a bias against the payment of compensations and the implementation of reforms. This is because paying high compensations today provides incentives for some interest groups to organize and oppose subsequent reforms with the only purpose of receiving a transfer. By paying lower compensations, governments attempt to prevent such interest groups from organizing. However, this comes at the cost of reforms being blocked by interest groups with relatively high losses.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
Affiliation: Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal & Institut de Recherches Cliniques de Montréal
Resumo:
Rapport de recherche