3 resultados para SOCIETY CLASSIFICATION CRITERIA

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-publication drafts are reproduced with permission and copyright © 2013 of the Journal of Orthopaedic Trauma [Mutch J, Rouleau DM, Laflamme GY, Hagemeister N. Accurate Measurement of Greater Tuberosity Displacement without Computed Tomography: Validation of a method on Plain Radiography to guide Surgical Treatment. J Orthop Trauma. 2013 Nov 21: Epub ahead of print.] and copyright © 2014 of the British Editorial Society of Bone and Joint Surgery [Mutch JAJ, Laflamme GY, Hagemeister N, Cikes A, Rouleau DM. A new morphologic classification for greater tuberosity fractures of the proximal humerus: validation and clinical Implications. Bone Joint J 2014;96-B:In press.]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Routine screening of scoliosis is a controversial subject and screening efforts vary greatly around the world. METHODS: Consensus was sought among an international group of experts (seven spine surgeons and one clinical epidemiologist) using a modified Delphi approach. The consensus achieved was based on careful analysis of a recent critical review of the literature on scoliosis screening, performed using a conceptual framework of analysis focusing on five main dimensions: technical, clinical, program, cost and treatment effectiveness. FINDINGS: A consensus was obtained in all five dimensions of analysis, resulting in 10 statements and recommendations. In summary, there is scientific evidence to support the value of scoliosis screening with respect to technical efficacy, clinical, program and treatment effectiveness, but there insufficient evidence to make a statement with respect to cost effectiveness. Scoliosis screening should be aimed at identifying suspected cases of scoliosis that will be referred for diagnostic evaluation and confirmed, or ruled out, with a clinically significant scoliosis. The scoliometer is currently the best tool available for scoliosis screening and there is moderate evidence to recommend referral with values between 5 degrees and 7 degrees. There is moderate evidence that scoliosis screening allows for detection and referral of patients at an earlier stage of the clinical course, and there is low evidence suggesting that scoliosis patients detected by screening are less likely to need surgery than those who did not have screening. There is strong evidence to support treatment by bracing. INTERPRETATION: This information statement by an expert panel supports scoliosis screening in 4 of the 5 domains studied, using a framework of analysis which includes all of the World Health Organisation criteria for a valid screening procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.