5 resultados para SMA, Skid resistance, texture, Contact Area, RTM
em Université de Montréal, Canada
Resumo:
Les interactions entre les squelettes sucre-phosphate de nucléotides jouent un rôle important dans la stabilisation des structures tertiaires de larges molécules d’ARN. Elles sont régies par des règles particulières qui gouverne leur formation mais qui jusque là demeure quasiment inconnues. Un élément structural d’ARN pour lequel les interactions sucre-phosphate sont importantes est le motif d’empaquetage de deux doubles hélices d’ARN le long du sillon mineur. Ce motif se trouve à divers endroits dans la structure du ribosome. Il consiste en deux doubles hélices interagissant de manière à ce que le squelette sucre-phosphate de l’une se niche dans le sillon mineur de l’autre et vice versa. La surface de contact entre les deux hélices est majoritairement formée par les riboses et implique au total douze nucléotides. La présente thèse a pour but d’analyser la structure interne de ce motif et sa dépendance de stabilité résultant de l’association optimale ou non des hélices, selon leurs séquences nucléotidiques. Il est démontré dans cette thèse qu’un positionnement approprié des riboses leur permet de former des contacts inter-hélices, par l’entremise d’un choix particulier de l’identité des pairs de bases impliquées. Pour différentes pairs de bases participant à ce contact inter-hélices, l’identité optimale peut être du type Watson-Crick, GC/CG, or certaines pairs de bases non Watson-Crick. Le choix adéquat de paires de bases fournit une interaction inter-hélice stable. Dans quelques cas du motif, l’identité de certaines paires de bases ne correspond pas à la structure la plus stable, ce qui pourrait refléter le fait que ces motifs devraient avoir une liberté de formation et de déformation lors du fonctionnement du ribosome.
Resumo:
La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.
Resumo:
Les deux fonctions principales de la main sont la manipulation d’objet et l’exploration tactile. La détection du glissement, rapportée par les mécanorécepteurs de la peau glabre, est essentielle pour l’exécution de ces deux fonctions. Durant la manipulation d’objet, la détection rapide du micro-glissement (incipient slip) amène la main à augmenter la force de pince pour éviter que l’objet ne tombe. À l’opposé, le glissement est un aspect essentiel à l’exploration tactile puisqu’il favorise une plus grande acuité tactile. Pour ces deux actions, les forces normale et tangentielle exercées sur la peau permettent de décrire le glissement mais également ce qui arrive juste avant qu’il y ait glissement. Toutefois, on ignore comment ces forces contrôlées par le sujet pourraient être encodées au niveau cortical. C’est pourquoi nous avons enregistré l’activité unitaire des neurones du cortex somatosensoriel primaire (S1) durant l’exécution de deux tâches haptiques chez les primates. Dans la première tâche, deux singes devaient saisir une pastille de métal fixe et y exercer des forces de cisaillement sans glissement dans une de quatre directions orthogonales. Des 144 neurones enregistrés, 111 (77%) étaient modulés à la direction de la force de cisaillement. L’ensemble de ces vecteurs préférés s’étendait dans toutes les directions avec un arc variant de 50° à 170°. Plus de 21 de ces neurones (19%) étaient également modulés à l’intensité de la force de cisaillement. Bien que 66 neurones (59%) montraient clairement une réponse à adaptation lente et 45 autres (41%) une réponse à adaptation rapide, cette classification ne semblait pas expliquer la modulation à l’intensité et à la direction de la force de cisaillement. Ces résultats montrent que les neurones de S1 encodent simultanément la direction et l’intensité des forces même en l’absence de glissement. Dans la seconde tâche, deux singes ont parcouru différentes surfaces avec le bout des doigts à la recherche d’une cible tactile, sans feedback visuel. Durant l’exploration, les singes, comme les humains, contrôlaient les forces et la vitesse de leurs doigts dans une plage de valeurs réduite. Les surfaces à haut coefficient de friction offraient une plus grande résistance tangentielle à la peau et amenaient les singes à alléger la force de contact, normale à la peau. Par conséquent, la somme scalaire des composantes normale et tangentielle demeurait constante entre les surfaces. Ces observations démontrent que les singes contrôlent les forces normale et tangentielle qu’ils appliquent durant l’exploration tactile. Celles-ci sont également ajustées selon les propriétés de surfaces telles que la texture et la friction. Des 230 neurones enregistrés durant la tâche d’exploration tactile, 96 (42%) ont montré une fréquence de décharge instantanée reliée aux forces exercées par les doigts sur la surface. De ces neurones, 52 (54%) étaient modulés avec la force normale ou la force tangentielle bien que l’autre composante orthogonale avait peu ou pas d’influence sur la fréquence de décharge. Une autre sous-population de 44 (46%) neurones répondait au ratio entre la force normale et la force tangentielle indépendamment de l’intensité. Plus précisément, 29 (30%) neurones augmentaient et 15 (16%) autres diminuaient leur fréquence de décharge en relation avec ce ratio. Par ailleurs, environ la moitié de tous les neurones (112) étaient significativement modulés à la direction de la force tangentielle. De ces neurones, 59 (53%) répondaient à la fois à la direction et à l’intensité des forces. L’exploration de trois ou quatre différentes surfaces a permis d’évaluer l’impact du coefficient de friction sur la modulation de 102 neurones de S1. En fait, 17 (17%) neurones ont montré une augmentation de leur fréquence de décharge avec l’augmentation du coefficient de friction alors que 8 (8%) autres ont montré le comportement inverse. Par contre, 37 (36%) neurones présentaient une décharge maximale sur une surface en particulier, sans relation linéaire avec le coefficient de friction des surfaces. La classification d’adaptation rapide ou lente des neurones de S1 n’a pu être mise en relation avec la modulation aux forces et à la friction. Ces résultats montrent que la fréquence de décharge des neurones de S1 encode l’intensité des forces normale et tangentielle, le ratio entre les deux composantes et la direction du mouvement. Ces résultats montrent que le comportement d’une importante sous-population des neurones de S1 est déterminé par les forces normale et tangentielle sur la peau. La modulation aux forces présentée ici fait le pont entre les travaux évaluant les propriétés de surfaces telles que la rugosité et les études touchant à la manipulation d’objets. Ce système de référence s’applique en présence ou en absence de glissement entre la peau et la surface. Nos résultats quant à la modulation des neurones à adaptation rapide ou lente nous amènent à suggérer que cette classification découle de la manière que la peau est stimulée. Nous discuterons aussi de la possibilité que l’activité des neurones de S1 puisse inclure une composante motrice durant ces tâches sensorimotrices. Finalement, un nouveau cadre de référence tridimensionnel sera proposé pour décrire et rassembler, dans un même continuum, les différentes modulations aux forces normale et tangentielle observées dans S1 durant l’exploration tactile.
Resumo:
Le réalisme des objets en infographie exige de simuler adéquatement leur apparence sous divers éclairages et à différentes échelles. Une solution communément adoptée par les chercheurs consiste à mesurer avec l’aide d’appareils calibrés la réflectance d’un échantillon de surface réelle, pour ensuite l’encoder sous forme d’un modèle de réflectance (BRDF) ou d’une texture de réflectances (BTF). Malgré des avancées importantes, les données ainsi mises à la portée des artistes restent encore très peu utilisées. Cette réticence pourrait s’expliquer par deux raisons principales : (1) la quantité et la qualité de mesures disponibles et (2) la taille des données. Ce travail propose de s’attaquer à ces deux problèmes sous l’angle de la simulation. Nous conjecturons que le niveau de réalisme du rendu en infographie produit déjà des résultats satisfaisants avec les techniques actuelles. Ainsi, nous proposons de précalculer et encoder dans une BTF augmentée les effets d’éclairage sur une géométrie, qui sera par la suite appliquée sur les surfaces. Ce précalcul de rendu et textures étant déjà bien adopté par les artistes, il pourra mieux s’insérer dans leurs réalisations. Pour nous assurer que ce modèle répond aussi aux exigences des représentations multi-échelles, nous proposons aussi une adaptation des BTFs à un encodage de type MIP map.
Resumo:
Objective: Our research program has focused on the development of promising, soft alkylating N-phenyl-N’-(2-chloroethyl)urea (CEU) compounds which acylate the glutamic acid-198 of β-tubulin, near the binding site of colchicum alkaloids. CEUs inhibit the motility of cancerous cells in vitro and, interestingly, exhibit antiangiogenic and anticancer activity in vivo. Mitotic arrest induced by microtubule-interfering agents such as CEUs remains the major mechanism of their anticancer activity, leading to apoptosis. However, we recently demonstrated that microtubule disruption by CEUs and other common antimicrotubule agents greatly alters the integrity and organization of microtubule-associated structures, the focal adhesion contact, thereby initiating anoikis, an apoptosis-like cell death mechanism caused by the loss of cell contact with the extracellular matrix. Methods: To ascertain the activated signaling pathway profile of CEUs, flow cytometry, Western blot, immunohistochemistry and transfection experiments were performed. Wound-healing and chick embryo assays were carried out to evaluate the antiangiogenic potency of CEUs. Results: CEU-induced apoptosis involved early cell cycle arrest in G2/M and increased level of CDK1/cycline B proteins. These signaling events were followed by the specific activation of the intrinsic apoptosis pathway, involving loss of mitochondrial membrane potential (Δψm) and ROS production, cytochrome c release from mitochondria, caspase activation, AIF nuclear translocation, PARP cleavage and nuclear fragmentation. CEUs maintained their efficacy on cells plated on pro-survival extracellular matrices or exhibiting overexpression of P-glycoprotein or the anti-apoptotic protein Bcl-2. Conclusion: Our results suggest that CEUs represent a promising new class of antimicrotubule, antiangiogenic and pro-anoikis agents.